Journal of Chemical & Engineering Data, Vol. 54, No. 1, 2009 101
(
(
(
26) Conder, J. R.; Locke, D. C.; Purnell, J. H. Concurrent solution and
adsorption phenomena in chromatography. I. General considerations.
J. Phys. Chem. 1969, 73, 700–708.
(45) Foco, G. M.; Bottini, S. B.; Quezada, N.; de la Fuente, J. C.; Peters,
C. J. Activity coefficients at infinite dilution in 1-alkyl-3-methylimi-
dazolium tetrafluoroborate ionic liquids. J. Chem. Eng. Data 2006,
51, 1088–1091.
(46) Letcher, T. M.; Soko, B.; Ramjugernath, D.; Deenadayalu, N.; Nevines,
A.; Naicker, P. K. Activity Coefficients at Infinite Dilution of Organic
Solutes in 1-Hexyl-3-methylimidazolium Hexafluorophosphate from
Gas-Liquid Chromatography. J. Chem. Eng. Data 2003, 48, 708–711.
(47) Letcher, T. M.; Domanska, U.; Marciniak, M.; Marciniak, A. Activity
coefficients at infinite dilution measurements for organic solutes in
the ionic liquid 1-butyl-3-methyl-imidazolium 2-(2-methoxyethoxy)
ethyl sulfate using g.l.c. at T ) (298.15, 303.15, and 308.15) K.
J. Chem. Thermodyn. 2005, 37, 587–593.
(48) Poole, C. F. Chromatographic and spectroscopic methods for the
determination of solvent properties of room temperature ionic liquids.
J. Chromatogr. A 2004, 1037, 49–82.
(49) Domanska, U.; Marciniak, A. Activity coefficients at infinite dilution
measurements for organic solutes and water in the ionic liquid 1-ethyl-
3-methylimidazolium trifluoroacetate. J. Phys. Chem. B 2007, 111,
11984–11988.
27) Nikolov, R. N. Identification evaluation of retention mechanisms in
gas-liquid chromatographic systems. J. Chromatogr. 1982, 241, 237–
2
56.
28) Pomaville, R. M.; Poole, C. F. Changes in retention and polarity
accompanying the replacement of hydrogen by fluorine in tetraalky-
lammonium alkyl- and arylsulfonate salts used as stationary phases
in gas chromatography. J. Chromatogr. 1989, 468, 261–278.
29) Lynden-Bell, R. M.; Del P o´ polo, M. G.; Youngs, T. G. A.; Kohanoff,
J.; Hanke, C. G.; Harper, J. B.; Pinilla, C. C. Simulations of ionic
liquids, solutions, and surfaces. Acc. Chem. Res. 2007, 40, 1138–1145.
30) Canongia Lopes, J. N. A.; Padua, A. A. H. Nanostructural organization
in ionic liquids. J. Phys. Chem. B 2006, 110, 3330–3335.
(
(
(
31) Abraham, M. H.; Grellier, P. L.; Mc Gill, R. A. Determination of
Olive Oil-Gas and Hexadecane-Gas Partition Coefficients, and calcula-
tion of the corresponding Olive Oil-Water and Hexadecane-Water
Partition Coefficients. J. Chem. Soc., Perkin Trans. II 1987, 797–803.
32) Abraham, M. H. Scales of Solute Hydrogen-bonding: Their construc-
tion and Application to Physicochemical and Biochemical Processes.
Chem. Soc. ReV. 1993, 22, 73–83.
(
(
(50) Kato, R.; Gmehling, J. Activity coefficients at infinite dilution of
various solutes in the ionic liquids MMIM methylsulfate, MMIM
methoxyethylsulfate, MMIM dimethylphosphate, N ethylpyridinium
bis(trifluoromethylsulfonyl) imide and pyridiniumethoxyethylsulfate
(MMIM ) 1 methyl 3 methylimidazolium). Fluid Phase Equilib. 2004,
226, 37–44.
33) Abraham, M. H.; Whiting, G. S.; Doherty, R. M. Hydrogen Bonding.
Part 13. A New Method for the Characterization of GLC Stationary
Phases-The Lafford Data Set. J. Chem. Soc., Perkin Trans. II 1990,
1
451–1460.
(
34) Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J.
(51) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties
of mixtures containing ionic liquids. Activity coefficients at infinite
dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluo-
roborate using gas-liquid chromatography. J. Chem. Thermodyn. 2002,
34, 1341–1347.
(52) Domanska, U.; Marciniak, A. Measurements of activity coefficients
at infinite dilution of aromatic and aliphatic hydrocarbons, alcohols,
and water in the new ionic liquid [EMIM][SCN] using GLC. J. Chem.
Thermodyn. 2008, 40, 860–866.
(53) Zhou, Q.; Wang, L.-S.; Wu, J.-S.; Li, M.-Y. Activity Coefficients at
Infinite Dilution of Polar Solutes in 1-Butyl-3-methylimidazolium
Tetrafluoroborate Using Gas-Liquid Chromatography. J. Chem. Eng.
Data 2007, 52, 131–134.
H
Hydrogen bonding XVI. A new solute solvation parameter, π , from
2
gas chromatographic data. J. Chromatogr. 1991, 587, 213–228.
35) Sprunger, L.; Proctor, A., Jr.; Abraham, M. H. LFER correlations for
room temperature ionic liquids: Separation of equation coefficients
into individual cation-specific and anion-specific contributions. Fluid
Phase Equilib. 2008, 265, 104–111.
(
(
36) Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; De Souza, R. F.; Dupont,
J. The use of new ionic liquids in two-phase catalytic hydrogenation
reaction by rhodium complexes. Polyhedron 1996, 15, 1217–1219.
37) Malham, I. B.; Letellier, P.; Turmine, M. Evidence of a phase transition
in water- 1-butyl-3-methylimidazolium tetrafluoroborate and water-
(
1-butyl-2,3-dimethylimidazolium tetrafluoroborate mixtures at 298 K:
Determination of the surface thermal coefficient, b T,P. J. Phys. Chem.
B 2006, 110, 14212–14214.
(54) Sprunger, L.; Clark, M., Jr.; Abraham, M. H. Characterization of room-
temperature ionic liquids by the abraham model with cation-specific
and anion-specific equation coefficients. J. Chem. Inf. Model. 2007,
47, 1123–1129.
(
38) Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. The use of gas-
liquid chromatography to determine activity coefficients and second
virial coefficients of mixtures. Proc. R. Soc. London 1966, A295, 259–
(55) David, W.; Letcher, T. M.; Ramjugernath, D.; Raal, J. D. Activity
Coefficients of Hydrocarbon solutes at infinite dilution in the ionic
liquid, 1-methyl-3-octyl-imidazolium chloride from gas-liquid chro-
matography. J. Chem. Thermodyn. 2003, 35, 1335–1341.
(56) Krummen, M.; Wasserscheid, P.; Gmehling, J. Measurement of
Activity Coefficients at Infinite Dilution in Ionic Liquids Using the
Dilutor Technique. J. Chem. Eng. Data 2002, 47, 1411–1417.
(57) Bou Malham, I.; Letellier, P.; Turmine, M. Application of the Bahe’s
pseudolattice-theory to water s 1-butyl-3-methylimidazolium tet-
rafluoroborate (bmimBF4) mixtures at 298.15 K. Part I: Autoprotolysis
constants. Talanta 2007, 72, 155–164.
2
70.
(
(
39) Grant, D. W. Gas-Liquid Chromatography; van Nostrand Reinhold:
London, 1971.
40) Thermodynamics Research Center; Texas Engineering Experiment
Station, The Texas A&M University System: College Station, April
1
987.
(
(
(
(
41) Tsonopoulos, C. Empirical correlation of second virial coefficients.
AIChE J. 1974, 20, 263–272.
42) Tsonopoulos, C. Second virial coefficients of polar haloalkanes. AIChE
J. 1975, 21, 827–829.
43) Tsonopoulos, C. Second virial coefficients of water pollutants. AIChE
J. 1978, 24, 1112–1115.
44) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases
and Liquids, 3rd ed.,Chemical Engineering Series; McGraw-Hill: New
York, 1977.
Received for review September 1, 2008. Accepted October 16, 2008.
JE800658V