1192 Macromolecules, Vol. 44, No. 5, 2011
Zhang et al.
The concentration of the 1:1 host-guest mixtures was fixed
at 2.0 mg/mL, and the concentration of pyrene was kept at
6.0 ꢀ 10-7 M.
(8) Moughton, A. O.; O’Reilly, R. K. J. Am. Chem. Soc. 2008, 130,
8714–8725.
(9) Szejtli, J. Chem. Rev. 1998, 98, 1743–1753.
(10) Wenz, G.; Han, B.-H.; Muller, A. Chem. Rev. 2006, 106, 782–817.
(11) Hapiot, F.; Tilloy, S.; Monflier, E. Chem. Rev. 2006, 106, 767–781.
(12) Douhal, A. Chem. Rev. 2004, 104, 1955–1976.
(13) Harada, A. Acc. Chem. Res. 2001, 34, 456–464.
(14) Uekama, K.; Hirayama, F.; Irie, T. Chem. Rev. 1998, 98, 2045–
2076.
(15) Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875–1918.
(16) Nepogodiev, S. A.; Stoddart, J. F. Chem. Rev. 1998, 98, 1959–1976.
(17) Davis, M. E.; Brewster, M. E. Nat. Rev. Drug Discovery 2004, 3,
1023–1035.
Micelle Size Measurements. Measurements of micelle size
were performed on the host-guest solutions using a Zetasizer
Nano ZS (Malvern Instruments, Southborough, MA) with a
laser light wavelength of 633 nm at a 173° scattering angle. The
micelle size measurement was performed in the temperature
range of 3-45 °C, and the sample was allowed to equilibrate for
12 min at each temperature before the measurements were
taken. The convolution of the measured correlation curve to
an intensity size distribution was accomplished using a non-
negative least-squares algorithm. The decay rate distributions
were transformed to an apparent diffusion coefficient (D). From
the diffusion coefficient, the apparent hydrodynamic size of the
micelles can be obtained by the Stokes-Einstein equation. The
Z-average hydrodynamic diameters of the particles were given
by the instrument. The Z-average size is the intensity-weighted
mean diameter derived from a cumulant or single-exponential fit
of the intensity autocorrelation function.
(18) Li, J.; Loh, X. J. Adv. Drug Delivery Rev. 2008, 60, 1000–1017.
(19) Li, J. Adv. Polym. Sci. 2009, 222, 79–113.
(20) Zhang, Z.-X.; Liu, X.; Xu, F. J.; Loh, X. J.; Kang, E.-T.; Neoh, K.-
G.; Li, J. Macromolecules 2008, 41, 5967–5970.
(21) Schild, H. G. Prog. Polym. Sci. 1992, 17, 163–249.
(22) Bromberg, L. E.; Ron, E. S. Adv. Drug Delivery Rev. 1998, 31, 197–
221.
(23) Chaterji, S.; Kwon, I. K.; Park, K. Prog. Polym. Sci. 2007, 32,
1083–1122.
(24) Chilkoti, A.; Dreher, M. R.; Meyer, D. E.; Raucher, D. Adv. Drug
Delivery Rev. 2002, 54, 613–630.
(25) Da Silva, R. M. P.; Mano, J. F.; Reis, R. L. Trends Biotechnol.
2007, 25, 577–583.
(26) Gil, E. S.; Hudson, S. A. Prog. Polym. Sci. 2004, 29, 1173–1222.
(27) Hoffman, A. S.; Stayton, P. S. Prog. Polym. Sci. 2007, 32, 922–
932.
(28) Hou, Q. P.; Bae, Y. H. Adv. Drug Delivery Rev. 1999, 35, 271–
287.
Transmission Electron Microscopy (TEM). The samples for
TEM were prepared by directly depositing a drop (ca. 5 μL) of
1:1 host-guest solution (2.0 mg/mL, prepared at 14 or 20 °C)
containing 0.1 wt % phosphotungstic acid (PTA) onto copper
grids, which were coated in advance with supportive Formvar
films and carbon (Agar Scientific). The samples were kept in a
dry cabinet for 12 h for drying at 14 or 20 °C before they were
imaged on a JEOL JEM-2010F FasTEM field emission trans-
mission electron microscope operated at 100 kV.
(29) Jeong, B.; Kim, S. W.; Bae, Y. H. Adv. Drug Delivery Rev. 2002, 54,
37–51.
Atomic Force Microscopy (AFM). The AFM imaging was
performed in tapping mode using the Dimension 3100 model
with Nanoscope IIIa controller (Veeco, Santa Barbara, CA).
Commercially available standard silicon probes with spring
constant of 40 N/m and a tip radius of 7 nm (PPP-NCH,
Nanosensors, Switzerland) was used for imaging. The images
were processed and analyzed using the Nanoscope software
v5.30r3 (Veeco, Santa Barbara, CA). The sample preparation
was similar to that for TEM, but silicon was used as substrate.
The silicon substrate was washed with absolute ethanol and
dried with nitrogen at room temperature.
(30) Kikuchi, A.; Okano, T. Adv. Drug Delivery Rev. 2002, 54, 53–77.
(31) Kokufuta, E. Adv. Polym. Sci. 1993, 110, 157–177.
(32) Rzaev, Z. M. O.; Dincer, S.; Piskin, E. Prog. Polym. Sci. 2007, 32,
534–595.
(33) Schmaljohann, D. Adv. Drug Delivery Rev. 2006, 58, 1655–1670.
(34) Pintauer, T.; Matyjaszewski, K. Coord. Chem. Rev. 2005, 249,
1155–1184.
(35) Masci, G.; Giacomelli, L.; Crescenzi, V. Macromol. Rapid Com-
mun. 2004, 25, 559–564.
(36) Crutchfield, C. A.; Harris, D. J. Magn. Reson. Chem. 2007, 45, 463–
468.
(37) Postma, A.; Davis, T. P.; Donovan, A. R.; Li, G. X.; Moad, G.;
Mulder, R.; O’Shea, M. S. Polymer 2006, 47, 1899–1911.
(38) Hwang, M. J.; Joo, M. K.; Choi, B. G.; Park, M. H.; Hamley, I. W.;
Jeong, B. Macromol. Rapid Commun. 2010, 31, 2064–2069.
(39) Li, J.; He, W. D.; Han, S. C.; Sun, X. L.; Li, L. Y.; Zhang, B. Y.
J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 786–796.
(40) Stoica, F.; Alexander, C.; Tirelli, N.; Miller, A. F.; Saiani, A. Chem.
Commun. 2008, 4433–4435.
(41) Kotsuchibashi, Y.; Kuboshima, Y.; Yamamoto, K.; Aoyagi, T.
J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6142–6150.
(42) Dai, F. Y.; Wang, P. F.; Wang, Y.; Tang, L.; Yang, J. H.; Liu,
W. G.; Li, H. X.; Wang, G. C. Polymer 2008, 49, 5322–5328.
(43) Xu, J.; Luo, S. Z.; Shi, W. F.; Liu, S. Y. Langmuir 2006, 22, 989–
997.
Acknowledgment. This work was jointly supported by MIND-
EF-NUS Joint Applied Cooperation Program (MINDEF/NUS/
JPP/10/02), Singapore Ministry of Education Academic Research
Fund Tier 2 Grant (R-397-000-031-112), Incentive Funding from
Faculty of Engineering, National University of Singapore (R-397-
000-031-731), and Institute of Materials Research and Engineering
(IMRE), A*STAR (Agency for Science, Technology and Re-
search), Singapore.
Supporting Information Available: A table of selected
characterization data for adamantyl-containing PPGs and star-
ing PPGs and figures showing the turbidity variations with
temperature for a series of host-guest mixtures with PPG-
4K-(Ad)2 and PPG-400-(Ad)2 as guest polymer, respectively.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(44) Wu, K.; Shi, L. Q.; Zhang, W. Q.; An, Y. L.; Zhu, X. X. J. Appl.
Polym. Sci. 2006, 102, 3144–3148.
(45) Loh, X. J.; Zhang, Z. X.; Wu, Y. L.; Lee, T. S.; Li, J. Macro-
molecules 2009, 42, 194–202.
(46) Zhao, X. L.; Liu, W. G.; Chen, D. Y.; Lin, X. Z.; Lu, W. W.
Macromol. Chem. Phys. 2007, 208, 1773–1781.
€
(47) Xia, Y.; Burke, N. A. D.; Stover, H. D. H. Macromolecules 2006,
39, 2275–2283.
(48) Cheng, C.; Schmidt, M.; Zhang, A.; Schluter, A. D. Macromole-
References and Notes
€
cules 2007, 40, 220–227.
(49) Qin, S. H.; Geng, Y.; Discher, D. E.; Yang, S. Adv. Mater. 2006, 18,
2905–2909.
(1) Kakizawa, Y.; Kataoka, K. Adv. Drug Delivery Rev. 2002, 54, 203–
222.
(2) Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A. Adv. Drug
(50) Jeong, B.; Windisch, C. F.; Park, M. J.; Sohn, Y. S.; Gutowska, A.;
Char, K. J. Phys. Chem. B 2003, 107, 10032–10039.
(51) Lee, B. H.; Lee, Y. M.; Sohn, Y. S.; Song, S. C. Macromolecules
2002, 35, 3876–3879.
(52) Jeong, B.; Bae, Y. H.; Kim, S. W. Macromolecules 1999, 32, 7064–
7069.
Delivery Rev. 2001, 53, 95–108.
(3) Kataoka, K.; Harada, A.; Nagasaki, Y. Adv. Drug Delivery Rev.
2001, 47, 113–131.
(4) Guo, M. Y.; Jiang, M. Soft Matter 2009, 5, 495–500.
(5) Chen, D. Y.; Jiang, M. Acc. Chem. Res. 2005, 38, 494–502.
(6) Wang, J.; Jiang, M. J. Am. Chem. Soc. 2006, 128, 3703–3708.
(7) Zeng, J.; Shi, K.; Zhang, Y.; Sun, X.; Zhang, B. Chem. Commun.
2008, 3753–3755.
(53) Jeong, B.; Bae, Y. H.; Kim, S. W. Colloids Surf., B 1999, 16,
185–193.