plant for sterilizing medical kits with future mass production
of metal nanoparticles prepared in RTIL in mind. The
industrial plant can irradiate 200 vials  100 mL with the
accelerated electron beam at a time and the process can be
completed within 10 s.
Part of this research was supported by Grant-in-Aid for
Scientific Research on Innovative Areas (Area No. 2206),
Grant No. 23107518, from Japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT) and General
Sekiyu R&D Encouragement Assistance Foundation.
Notes and references
1 Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton,
Wiley-VCH, Weinheim, Germany, 2nd edn, 2008; T. Tsuda and
C. L. Hussey, in Modern Aspects of Electrochemistry, ed.
R. E. White, Springer, New York, vol. 45, 2009, ch. 2, pp. 63–174.
2 M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and
B. Scrosati, Nat. Mater., 2009, 8, 621; K. R. J. Lovelock,
I. J. Villar-Garcia, F. Maier, H.-P. Steinruck and P. Licence,
¨
Chem. Rev., 2010, 110, 5158; S. Kuwabata, T. Tsuda and
T. Torimoto, J. Phys. Chem. Lett., 2010, 1, 3177.
3 Nanoparticles From Theory to Application, ed. G. Schmid, Wiley-VCH,
Weinheim, Germany, 2004.
4 T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv.
Mater., 2010, 22, 1196; J. Dupont and J. D. Scholten, Chem.
Soc. Rev., 2010, 39, 1780.
5 J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner and
S. R. Teixeira, J. Am. Chem. Soc., 2002, 124, 4228.
Fig. 2 TEM images of (a) Mg, (b) Fe, (c) Zn, (d) Al, (e) Sn, and (f)
FePt nanoparticles prepared by accelerated electron beam irradiation
at 6 kGy in [BuMeIm][Tf2N]. The concentration of the metal salts
added to the RTIL is shown in Table 1.
6 M. Brettholle, O. Hofft, L. Klarhofer, S. Mathes, W. Maus-
¨
¨
Friedrichs, S. Z. E. Abedin, S. Krischok, J. Janek and F. Endres,
Phys. Chem. Chem. Phys., 2010, 12, 1750.
given in the ESI.w We found that the Pt nanoparticles become
large upon heating the accelerated electron beam-irradiated
5 mmol LÀ1 K2PtCl4 RTIL solutions at 573 K for 30 min
(Fig. S11 and S12, ESIw). Variation in the Pt nanoparticle size
after the process is summarized in Table S1 (ESIw). Catalytic
activity for electrochemical ORR of the Pt-GCE was estimated
by cyclic voltammograms recorded in O2-saturated 0.5 mol LÀ1
H2SO4 aqueous solution. As shown in Fig. S13 (ESIw), there is
no wave for ORR in the voltammogram recorded at a bare
GC electrode, but if the Pt-GCE was employed, current increment
for electrochemical ORR initiated at ca. +0.93 V vs. NHE and a
distinct redox couple for H+/H2 reaction appeared at ca. 0 V due
to the Pt nanoparticles modified on the GCE. The Pt-GCE
prepared in this work exhibited a favorable electrocatalytic
activity to ORR as an electrode catalyst for PEM fuel cell.
In conclusion, a wide variety of metal nanoparticles were
obtained by the accelerated electron beam irradiation of the
[R1MeIm][Tf2N] RTIL without a stabilizing agent. Even base-metal
nanoparticles were produced without any difficulties, although
the nanoparticles may not be sufficiently characterized because
of their instability in air. In addition to this, Pt nanoparticles
prepared in this investigation showed a favorable catalytic
activity for electrochemical ORR. The most important thing is
that this study was carried out at an existing common industrial
7 A. Imanishi, M. Tamura and S. Kuwabata, Chem. Commun., 2009,
1775; A. Imanishi, S. Gonsui, T. Tsuda, S. Kuwabata and
K. Fukui, Phys. Chem. Chem. Phys., 2011, 13, 14823.
8 T. Torimoto, K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka
and S. Kuwabata, Appl. Phys. Lett., 2006, 89, 243117.
9 T. Tsuda, S. Seino and S. Kuwabata, Chem. Commun., 2009, 6792.
10 S. Seino, T. Kinoshita, Y. Otome, T. Maki, T. Nakagawa,
K. Okitsu, Y. Mizukoshi, T. Nakayama, T. Sekino, K. Niihara
and T. A. Yamamoto, Scr. Mater., 2004, 51, 467; H. Remita,
I. Lampre, M. Mostafavi, E. Balanzat and S. Bouffard, Radiat.
Phys. Chem., 2005, 72, 575; J. Belloni, Catal. Today, 2006,
113, 141; P. A. Yakabuskie, J. M. Joseph, P. Keech, G. A.
Botton, D. Guzonas and J. C. Wren, Phys. Chem. Chem. Phys.,
2011, 13, 7198.
11 J. F. Wishart, J. Phys. Chem. Lett., 2010, 1, 3225; I. A. Shkrob and
J. F. Wishart, J. Phys. Chem. B, 2009, 113, 5582.
12 S. Link and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 8410.
13 J. B. Rollins, B. D. Fitchett and J. C. Conboy, J. Phys. Chem. B,
2007, 111, 4990.
14 J. W. Choi, H. Y. Sohn, Y. J. Choi and Z. Z. Fang, J. Power
Sources, 2010, 195, 1463; M. T. Swihart, Curr. Opin. Colloid
Interface Sci., 2003, 8, 127.
15 C. A. Crouse, E. Shin, P. T. Murray and J. E. Spowart, Mater.
Lett., 2010, 64, 271.
16 C. Suryanarayana, Prog. Mater. Sci., 2001, 46, 1.
17 L. Balan, R. Schneider, D. Billaud and J. Ghanbaja, Mater. Lett.,
2005, 59, 1080; K.-F. Aguey-Zinsou and J.-R. Ares-Fernndez,
Chem. Mater., 2008, 20, 376.
18 J. Snyder, T. Fujita, M. W. Chen and J. Erlebacher, Nat. Mater.,
2010, 9, 904.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1925–1927 1927