Journal of the American Chemical Society
Communication
C. M.; Tsang, S.-W.; Lai, T.-H.; Reynolds, J. R.; So, F. Nat. Photon.
2
(
(
012, 6, 115.
3) (a) McNeill, C. R. Energy Environ. Sci. 2012, 5, 5653.
b) Facchetti, A. Mater. Today 2013, 16, 123. (c) Halls, J. J. M.;
Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.;
Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498. (d) Alam, M. M.;
Jenekhe, S. A. Chem. Mater. 2004, 16, 4647. (e) Schubert, M.; Dolfen,
D.; Frisch, J.; Roland, S.; Steyrleuthner, R.; Stiller, B.; Chen, Z.; Scherf,
U.; Koch, N.; Facchetti, A.; Neher, D. Adv. Energy Mater. 2012, 2, 369.
(
f) Jenekhe, S. A.; Yi, S. Appl. Phys. Lett. 2000, 77, 2635. (g) Zhou, E.;
Tajima, K.; Yang, C.; Hashimoto, K. J. Mater. Chem. 2010, 20, 2362.
h) Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K.
Angew. Chem., Int. Ed. 2011, 50, 2799. (i) Kietzke, T.; Horhold, H.-H.;
Neher, D. Chem. Mater. 2005, 17, 6532. (j) Holcombe, T. W.; Woo, C.
H.; Kavulak, D. F. J.; Thompson, B. C.; Frechet, J. M. J. J. Am. Chem.
(
̈
́
2
Soc. 2009, 131, 14160. (k) Mori, D.; Benten, H.; Ohkita, H.; Ito, S.;
Miyake, K. ACS Appl. Mater. Interfaces 2012, 4, 3325. (l) Zhan, X.;
Tan, Z. a.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.;
Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246.
Figure 3. AFM topographical images (5 × 5 μm ) of the surfaces of
all-polymer solar cells: (a) PNDIT:PSEHTT, (b) PNDIS:PSEHTT,
and (c) PNDIS-HD:PSEHTT; and the corresponding phase images of
d) PNDIT:PSEHTT, (e) PNDIS:PSEHTT, and (f) PNDIS-
(
(
m) Zhou, E.; Cong, J.; Zhao, M.; Zhang, L.; Hashimoto, K.; Tajima,
HD:PSEHTT.
K. Chem. Commun. 2012, 48, 5283. (n) Hwang, Y.-J.; Ren, G.; Murari,
N. M.; Jenekhe, S. A. Macromolecules 2012, 45, 9056. (o) Cao, Y.; Lei,
T.; Yuan, J.; Wang, J.-Y.; Pei, J. Polym. Chem 2013, 4, 5228. (p) Moore,
J. R.; Albert-Seifried, S.; Rao, A.; Massip, S.; Watts, B.; Morgan, D. J.;
Friend, R. H.; McNeill, C. R.; Sirringhaus, H. Adv. Energy Mater. 2011,
1, 230. (q) Brenner, T. J. K.; Hwang, I.; Greenham, N. C.; McNeill, C.
R. J. Appl. Phys. 2010, 107, 114501. (r) Guo, C.; Lin, Y.-H.; Witman,
M. D.; Smith, K. A.; Wang, C.; Hexemer, A.; Strzalka, J.; Gomez, E. D.;
Verduzco, R. Nano Lett. 2013, 13, 2957.
donor have a record performance (PCE = 3.3%, J = 7.78 mA/
cm , and EQE = 47%), which is comparable to similarly
sc
2
evaluated PC BM:PSEHTT BHJ solar cells. Balanced electron
60
and hole transport was observed in the PNDIS-HD:PSEHTT
blend active layers. The superior photovoltaic properties of
3e,n
PNDIS-HD compared to PNDIS and prior NDI copolymers
suggest that unipolar electron transport with high bulk mobility,
good crystallinity, size of alkyl side chains, and molecular weight
are all important factors in the design of suitable acceptor
polymers for BHJ solar cells.
(4) (a) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.;
Zhan, X. Adv. Mater. 2010, 22, 3876. (b) Mishra, A.; Bau
Chem., Int. Ed. 2012, 51, 2020.
5) (a) Subramaniyan, S.; Xin, H.; Kim, F. S.; Shoaee, S.; Durrant, J.
̈
erle, P. Angew.
(
R.; Jenekhe, S. A. Adv. Energy Mater. 2011, 1, 854. (b) Xin, H.;
Subramaniyan, S.; Kwon, T.-W.; Shoaee, S.; Durrant, J. R.; Jenekhe, S.
A. Chem. Mater. 2012, 24, 1995.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, NMR spectra, TGA thermograms,
UV−vis absorption spectra, cyclic voltammograms (CV), and
XRD patterns of copolymers, OFETs, PSEHTT:PC BM solar
■
*
S
(6) (a) Hwang, Y.-J.; Murari, N. M.; Jenekhe, S. A. Polym. Chem.
2013, 4, 3187. (b) Guo, X.; Kim, F. S.; Seger, M. J.; Jenekhe, S. A.;
Watson, M. D. Chem. Mater. 2012, 24, 1434.
(7) Scharber, M. C.; Mu
C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
8) (a) Chen, Z.; Lemke, H.; Albert-Seifried, S.; Caironi, M.; Nielsen,
̈
hlbacher, D.; Koppe, M.; Denk, P.; Waldauf,
6
0
(
M. M.; Heeney, M.; Zhang, W.; McCulloch, I.; Sirringhaus, H. Adv.
Mater. 2010, 22, 2371. (b) Hollinger, J.; Jahnke, A. A.; Coombs, N.;
Seferos, D. S. J. Am. Chem. Soc. 2010, 132, 8546.
AUTHOR INFORMATION
(9) Ren, G.; Ahmed, E.; Jenekhe, S. A. Adv. Energy Mater. 2011, 1,
9
46.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This paper is based on work (Excitonic Solar Cells) supported
by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences, under Award
DEFG02-07ER46467. The synthesis, characterization, and
charge transport properties of the n-type copolymers were
supported by the Office of Naval Research (ONR) (N00014-
11-1-0317) and the NSF (DMR-1035196).
REFERENCES
■
(
1
1) (a) Gu
07, 1324. (b) Thompson, B. C.; Frec
Ed. 2008, 47, 58. (c) Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6,
53.
2) (a) You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty,
T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun.
013, 4, 1446. (b) He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y.
Nat. Photon. 2012, 6, 591. (c) Small, C. E.; Chen, S.; Subbiah, J.; Amb,
̈
nes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007,
́
het, J. M. J. Angew. Chem., Int.
1
(
2
D
dx.doi.org/10.1021/ja4085429 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX