22
L. Xiao et al. / Journal of Fluorine Chemistry 84 (1997) 19–23
3.2.3. 1,1,1-Trifluoro-2-nonyn-4-ol [9]
column chromatography, (S)-1,1,1-trifluoro-(E)-2-nonen-
To a solution of lithium diisopropylamine (44 mmol) in
THF (40 ml) was added dropwise a precooled (y78 8C)
solution of 2-bromo-3,3,3-trifluoropropene (3.5 g, 20 mmol)
in THF (20 ml) at y78 8C. After stirring for 5 min, n-
C5H11CHO (2.5 ml, 24 mmol) was added to this solution
and the whole was stirred for 30 min. The reaction mixture
was quenched with 1 N HCl aq (100 ml) and extracted with
AcOEt three times. The organic layer was dried over MgSO4
and concentrated. The residue was chromatographedonsilica
gel to afford 3.96 g (19.8 mmol) of 1,1,1-trifluoro-2-nonyn-
4-ol in 93% yield, bp 100 8C/2 mm Hg. 1H NMR (CDCl3):
d 0.8–1.0 (3 H, m), 1.2–2.0 (8 H, m), 2.6–3.0 (1 H, br),
4.454 (1 H, tq, Js6.69, 2.98 Hz). 13C NMR (CDCl3): d
13.838, 22.411, 24.467, 31.202, 36.576 (q, Js1.22 Hz),
61.77 (q, Js1.48 Hz), 71.957 (q, Js52.88 Hz), 87.947 (q,
Js6.30 Hz), 114.041 (q, Js257.15 Hz). 19F NMR
(CDCl3): d 28.4 (s) from ext. CF3CO2H. lR (neat) 3325
4-ol was obtained in 79% yield.
3.2.6. Preparation of compounds 8–10
(R)-(q)-1,1,1-Trifluoro-2-heptanol (8). Into a solution
of n-propyl magnesium bromide (1.5 mmol) in freshly dried
diethyl ether (5 ml), was added R-tosylate 2 (1 mmol) [6]
in diethyl ether (5 ml) slowly at y70 8C. After 1.5 h of
stirring at that temperature, the mixture was warmed to room
temperature, and the whole was stirred overnight at that tem-
perature. The mixture was poured into water, and then the
ethereal layer was separated. (R)-(q)-1,1,1-Trifluoro-2-
heptanol 8 was purified by column chromatography on silica
gel.
(R)-(q)-1,1,1-Trifluoro-2-octanol (9). In the above
reaction, n-butyl magnesium bromide was used, and then
worked up similarly. (R)-(q)-1,1,1-Trifluoro-2-octanol 9
was purified by column chromatography on silica gel.
(R)-(q)-1,1,1-Trifluoro-2-nonanol (10). In the above
reaction, n-pentyl magnesium bromide was used, and then
worked up similarly. (R)-(q)-1,1,1-Trifluoro-2-nonanol10
was purified by column chromatography on silica gel.
cmy1
.
3.2.4. (R)-1,1,1-Trifluoro-2-nonyn-4-ol [9]
To a 0.17 M solution of a racemic 1,1,1-trifluoro-2-nonyn-
4-ol (4.03 mmol) in n-hexane (24 ml) were added vinyl
acetate (8.10 ml, 97.4 mmol) and lipase PL (0.548 g, 49320
U; Alcaligenes sp. Meito Sangyo Co., Ltd., Japan), and the
whole was stirred at 30 8C for 24 h. After removal of the
residue by filtration and concentration of this solution, sepa-
ration by silica gel column chromatography afforded an opti-
cally active (S)-1,1,1-trifluoro-2-nonyn-4-ol (yield 45%)
and (R)-1,1,1-trifluoro-4-acetoxy-2-nonyn. (R)-1,1,1-tri-
fluoro-2-nonyn-4-ol ()80% ee) was obtained by thehydrol-
ysis of (R)-1,1,1-trifluoro-4-acetoxy-2-nonyn in the aq.
NaOH (5%)–acetone system. (S)-1,1,1-trifluoro-2-nonyn-
References
[1]
R. Filler, Y. Kobayashi, Biomedicinal Aspects of Fluorine Chemistry,
Kodansha and Elsevier Biomedical, Amsterdam, 1983. C. Walsh,
Tetrahedron, 38 (1982) 871. J.T. Welch, S. Eswarakrishman, Fluorine
in Bioorganic Chemistry, Wiley, New York, 1990. J.T. Welch,
Tetrahedron, 43 (1987) 3123.
[2]
Y. Suzuki, O. Nonaka, Y. Koide, N. Okabe, T. Hagiwara, I. Kawamura,
N. Yamamoto, Y. Yamada, T. Kitazume, Ferroelectrics, 147 (1993)
109. K. Itoh, M. Takeda, M. Namekawa, S. Nayuri, Y. Murayama, T.
Yamazaki, T. Kitazume, Ferroelectrics, 148 (1993) 85. M. Koden, T.
Kaneko, K. Tamai, H. Takeda, S. Miyoshi, T. Wada, M. Takeda, K.
Itoh, T. Yamazaki, T. Kitazume, Jpn. J. Appl. Phys., 33 (1994) 1096.
K. Itoh, M. Takeda, M. Namekawa, S. Nayuri, Y. Murayama, T.
Yamazaki, T. Kitazume, Chem Lett., (1994) 839. K. Itoh, M. Takeda,
M. Namekawa, S. Nayuki, Y. Murayama, T. Yamazaki, T. Kitazume,
Chem. Lett., (1995) 641.
1
4-ol: [a]1D4 y4.1 (c 0.8, CHCl3) ()99% ee). H NMR
(CDCl3): d 0.8–1.0 (3 H, m), 1.2–2.0 (8 H, m), 2.6–3.0 (1
H, br), 4.454 (1 H, tq, Js6.69, 2.98 Hz). 13C NMR
(CDCl3): d 13.838, 22.411, 24.467, 31.202, 36.576 (q,
Js1.22 Hz), 61.77 (q, Js1.48 Hz), 71.957 (q, Js52.88
Hz), 87.947 (q, Js6.30 Hz), 114.041 (q, Js257.15 Hz).
19F NMR (CDCl3): d 28.4 (s) from ext. CF3CO2H. IR(neat)
.
3325 cmy1 (R)-1,1,1-trifluoro-4-acetoxy-2-nonyn. 1H
[3]
[4]
N. Harada, K. Nakanishi, Circular Dichroic Spectroscopy—Exciton
Coupling In Organic Stereochemistry, University Science Books, Mill
Valley, CA, 1983.
I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc.,
113 (1991) 4092. T. Kusumi, T. Hamada, M.O. Ishitsuka, I. Ohtani,
H. Kakisawa, J. Org. Chem., 57 (1992) 1033. T. Kusumi, T. Hamada,
M. Hara, M.O. Ishitsuka, H. Ginda, H. Kakisawa, Tetrahedron Lett.,
33 (1992) 2019. T. Kusumi, T. Fukushima, I. Ohtani, H. Kakisawa,
Tetrahedron Lett., 32 (1991) 2939.
NMR (CDCl3): d 0.90 (3 H, t, Js6.84 Hz) 1.30–1.50 (6
H, m) 1.70–1.90 (2 H, m) 2.11 (3 H, s) 5.86 (1 H, tq,
Js2.93, 5.86 Hz). 13C NMR (CDCl3): d 13.80, 20.61,
22.32, 24.34, 31.05, 33.62, 62.48, 72.09 (q, Js53.0 Hz),
84.66 (q, Js6.4 Hz), 113.83 (q, Js258 Hz), 169.53. 19F
NMR (CDCl3): d 11.14 (d, Js3.05 Hz) from ext. C6F6. IR
(neat) 1753 cmy1. [a]D15 q50.8 (c 0.7, CHCl3) (81% ee).
[5]
M. Kobayashi, K. Kawazoe, I. Kitagawa, Tetrahedron Lett., 30(1989)
4149. I. Kitagawa, M. Kobayashi, T. Katori, M. Yamashita, J. Tanaka,
M. Doi, T. Ishida, J. Am. Chem. Soc., 112 (1990) 3710.
J.-T. Lin, T. Yamazaki, T. Kitazume, J. Org. Chem., 52 (1987) 3211.
T. Yonezawa, Y. Sakamoto, K. Nogawa, T. Yamazaki, T. Kitazume,
Chem. Lett., (1996) 855.
3.2.5. (S)-1,1,1-Trifluoro-(E)-2-nonen-4-ol [9]
To a stirring solution of Red-Al (2.5 mmol) in toluene (3
ml) at y78 8C was added (S)-1,1,1-trifluoro-2-nonyn-4-ol
(2.1 mmol). After 3 h of stirring at that temperature, the
reaction was quenched with 1 N HCl (10 ml) and the usual
work-up gave the crude olefin. After purification by silica gel
[6]
[7]
[8]
T. Kitazume, M. Takeda, J.-T. Lin, T. Yamazaki, J. Fluorine Chem.,
43 (1989) 177.