Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Teller (BET) surface area, SA(BET), calculated based on CO2 authors thank Profs. Y. Sagara and N. Tamaoki at RIES, Hokkaido
isotherm was 249 m2 g-1. Furthermore, we carried out propane University for purification of compoundsDbOyI:p1r0e.1p0a3r9a/Dti0vCeCH0P77L7C6.C
and propene sorption experiments at room temperature to find
out whether the microporous nature of the void can selectively
uptake propene over propane. Unfortunately, we could not
Conflicts of interest
observe significant difference in sorption volumes of the two,
with 21.7 cm3 (0.97 mmol)/g of propene and 18.9 cm3 (0.84
mmol)/g of propane being adsorbed at 100.4 kPa.
There are no conflicts to declare.
The crystalline bulk of activated HOF CPDC-1 exhibited a
photocurrent of Σμ = 2.8 × 10−5 cm2V−1s−1 upon exciting at 355
Notes and references
1. Y.-F. Han, Y.-X. Yuan and H.-B. Wang, Molecules, 2017, 22,
266.
2. J. Luo, J.-W. Wang, J.-H. Zhang, S. Lai and D.-C. Zhong,
CrystEngComm, 2018, 20, 5884-5898.
3. I. Hisaki, C. Xin, K. Takahashi and T. Nakamura, Angew. Chem.
Int. Ed., 2019, 58, 11160-11170.
4. R.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou and B. Chen, Chem.
Soc. Rev., 2019, 48, 1362-1389.
5. I. Hisaki, J. Incl. Phenom. Macro., 2020, 1-17.
6. B. Wang, R.-B. Lin, Z. Zhang, S. Xiang and B. Chen, J. Am. Chem.
Soc., 2020, 142, 14399-14416.
nm as revealed from flash-photolysis time-resolved microwave
conductivity (FP-TRMC) measurement (Fig. 3).24,
The
observed conductivity in the present DC based HOF is
comparable with that obtained in TTF based MOF26 reported by
Dincă’s group and could be attributed to the molecular overlap
of dithiolylidene rings and close intermolecular S‧‧‧S contacts.
The microcrystalline nature of the sample used for the
measurement precluded us from determining the quantum
efficiency of the charge carrier generation () of CPDC-1.
Consequently, the charge carrier mobility (Σμ) remains
undetermined.
7. J. Yang, J. Wang, B. Hou, X. Huang, T. Wang, Y. Bao and H. Hao,
Chem. Eng. J., 2020, 399, 125873.
8. M. A. Little and A. I. Cooper, Adv. Funct. Mat., 2020, 30,
1909842.
9. A. I. Cooper, ACS Cent. Sci., 2017, 3, 544-553.
10. A. G. Slater and A. I. Cooper, Science, 2015, 348, aaa8075.
11. I. Hisaki, N. Ikenaka, N. Tohnai and M. Miyata, Chem.
Commun., 2016, 52, 300-303.
12. I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda,
M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato and N. Tohnai, J.
Am. Chem. Soc., 2016, 138, 6617-6628.
13. I. Hisaki, N. Ikenaka, E. Gomez, B. Cohen, N. Tohnai and A.
Douhal, Chem. Eur. J., 2017, 23, 11611-11619.
14. M. Kimura, W. H. Watson and J. Nakayama, J. Org. Chem.,
1980, 45, 3719-3721.
Fig. 3 Transient microwave photoconductivity obtained for the activated CPDC-1 crystals
as revealed from the flash photolysis-TRMC measurement. The excitation wavelength
used was 355 nm.
15. I. Hisaki, N. E. Affendy and N. Tohnai, CrystEngComm, 2017,
19, 4892-4898.
16. X. Zheng, N. Xiao, Z. Long, L. Wang, F. Ye, J. Fang, L. Shen and
X. Xiao, Synth. Met., 2020, 263, 116365.
17. Y. Zhang, S. N. Riduan and J. Wang, Chem. Eur. J, 2017, 23,
16419-16431.
18. M. A. Coffin, M. R. Bryce and W. Clegg, J. Chem. Soc. Chem.
Commun., 1992, 401-402.
19. K. I. Shivakumar, Goudappagouda, R. G. Gonnade, S. S. Babu
and G. J. Sanjayan, Chem. Commun., 2018, 54, 212-215.
20. J. Nafe and P. Knochel, Synthesis, 2016, 48, 103-114.
21. T. J. Kistenmacher, T. E. Phillips and D. O. Cowan, Acta Cryst.
B, 1974, 30, 763-768.
22. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry,
and Use John Wiley and Sons, New York, NY, 1974.
23. I. Hisaki, D. Yasumiya, H. Shigemitsu, S. Tsuzuki, N. Tohnai and
M. Miyata, Phys. Chem. Chem. Phys., 2012, 14, 13918-13921.
24. A. Saeki, Y. Koizumi, T. Aida and S. Seki, Acc. Chem. Res., 2012,
45, 1193-1202.
To conclude, by effectively employing the C3-symmetric
tri(dithiolylidene)cyclohexanetrione (DC)-based HOF CPDC-1,
we have demonstrated the pivotal role of bite angle ( ) on the
type of H-bonded motif and network formed. Thanks to five-
membered dithiolylidene rings, the larger bite angle in CPDC
precludes the formation of the frustrated triangular cyclic motif,
instead provides an acyclic anomalistic helix with alternating
diameters. As a consequence of the H-bonded helical structure,
the CPDC-1 forms a robust 3D, non-interpenetrated network
that supports the framework till 645 K. The highly π-delocalised
redox core of CPDC promotes intermolecular π-stacking and S‧
‧‧S interactions, supporting charge conduction in HOF. Thus,
this study offers a promising perspective to tailor the complex
topologies and properties of HOFs by bringing subtle
geometrical
changes
in
the
building
blocks.
This work was supported by KAKENHI (JP18H01966 and
JP19H04557) and the Dynamic Alliance for Open Innovation
Bridging Human, Environment and Materials from MEXT Japan.
I.H. thanks Izumi Science and Technology Foundation. K.I.S.
thanks RIES, Hokkaido University for financial support. The
25. A. Saeki, Polym. J., 2020, 52, 1307-1321.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins