Emission Quenching and Charge Separation
J. Phys. Chem. B, Vol. 101, No. 38, 1997 7503
TLC, Rf ≈ 0.98, appears violet on the TLC plate or column
gel (vide supra).
(dd, J ) 1.7, 5.7 Hz, 1 H, H-5), 7.53 (dd, J ) 1.8, 5.9 Hz, 1 H,
H-5), 4.58 (dq, J ) 2.4, 7.2 Hz, 4 H, (CO)O-CH2CH3), 4.43
(dq, J ) 2.4, 7.2 Hz, 4 H, (CO)O-CH2CH3), 1.52 (dt, J ) 2.4,
7.2 Hz, 6 H, (CO)O-CH2CH3), 1.39 (dt, J ) 1.2, 7.0 Hz, 6 H,
(CO)O-CH2CH3).
UV-Vis (see Figure 3): λmax at 463, 520, 592, and 682 nm
in CH2Cl2). The molar absorptivity ꢀ could not be determined
(
due to lack of material, but was estimated to be similar to that
of 8 (vide infra) by comparison of the relative intensities of the
π-to-π* transition and the MLCT transitions. No steady-state
emission was observed upon irradiation at 520, 592, or 682 nm.
Irradiation at 463 nm gave a very weak emission residue with
For NMR and UV-visible spectra of 10, please see Sup-
porting Information.
Acknowledgment. This work was supported by The Knut
and Alice Wallenberg Foundation and The Swedish Natural
Science Research Council. T.N. acknowledges a personal grant
from Vattenfall AB, Sweden. We thank Mikael Andersson,
Uppsala University, for assistance with some of the steady-state
emission studies and Anna B o¨ rje, Royal Institute of Technology,
for the 2D NMR study.
a band structure similar to that of 4, λmax em 630 nm. The point
group of the solution species is D4h. 1H NMR (CDCl3 as solvent
and internal standard): δ 9.49 (d, J ) 5.9 Hz, 4 H, H-6); 8.79
(
4
d, J ) 1.8 Hz, 4 H, H-3); 8.09 (dd, J ) 1.7, 5.9 Hz, 4 H, H-5);
.55 (q, J ) 7.1 Hz, 8 H, (CO)O-CH2CH3); 1.51 (t, J ) 7.1
Hz, 12 H, (CO)O-CH2CH3).
13C NMR (CDCl3 as solvent and internal standard): 164.0,
Supporting Information Available: ESI-MS spectra of
compounds 4, 7, and 8. UV-vis spectra comparing 9 and 10
and parts of the NMR spectra comparing compounds 4, 9, and
1
61.2, 154.8, 137.4, 122.9, 121.2, 62.6, 14.3.
8
: cis-Dichlororuthenium(II)(4,4′-diethoxycarbonyl-2,2′-bi-
II
+
pyridine)2, [cis-Cl2Ru (diester)2]. ESI-MS: M , [Ru(diester)2-
Cl(CH3CN)] , observed 778.655 m/z, simulated peak maximum
1
0 (6 pages). Ordering information is given on any current
+
masthead page.
mass for C34H35N5O8ClRu: 778.122 m/z, alternatively [Ru-
+
(
diester)2(OAc)(H2O)] , simulated peak maximum. Mass for
References and Notes
C34H37N4O11Ru: 779.151 m/z. For other ions and spectra, see
Supporting Information.
(1) See e.g. (and references therein): (a) Kurreck, H.; Huber, M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 849. (b) Sauvage, J.-P.; Collin, J.-P.;
Chambron, J.-C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.;
De Cola, L.; Flamigni, L. Chem. ReV. (Washington, DC) 1994, 94, 993. (c)
Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res 1993, 26, 198. (d)
Wasielewski, M. R. Chem. ReV. (Washington, DC) 1992, 92, 435. (e)
Balzani, V.; Scandola, F. Supramolecular Photochemistry; Ellis Horwood:
UK, Chichester, 1991.
TLC, Rf ≈ 0.95, appears deep purple on the TLC plate or
column gel (vide supra).
-
1
UV-Vis (see Figure 3) λmax at 430 nm (ꢀ )14 200 M
-
1
-1
-1
cm ) and 586 nm (ꢀ ) 14 100 M cm , both in CH2Cl2).
No steady-state emission was observed upon irradiation into
either of the visible bands. The point group of the solution
species is C2, and the assignment of the proton resonances is
(2) For recent examples of noncovalent, pairwise assembly of donors
and acceptors, see refs 2a-d and references therein. (a) Hayashi, T.;
Takimura, T.; Ogoshi, H. J. Am. Chem. Soc. 1995, 117, 7, 11606. (b) Kr a´ l,
V.; Springs, S. L.; Sessler, J. L. J. Am. Chem. Soc. 1995, 117, 7, 8881. (c)
Berman, A.; Izraeli, E. S.; Levanon, H.; Wang, B.; Sessler, J. L. J. Am.
Chem. Soc. 1995, 117, 8252. (d) Roberts, J. A.; Kirby, J. P.; Nocera, D. G.
J. Am. Chem. Soc. 1995, 117, 8051. (e) Benniston, A. C.; Harriman, A. J.
Am. Chem. Soc. 1994, 116, 11531.
supported by 2D NMR.
1H NMR (500 MHz, CDCl3 as solvent and internal stan-
dard): δ 10.47 (d, J ) 6.0 Hz, 2 H, H-6′), 8.86 (d, J ) 2.1 Hz,
2 H, H-3′), 8.69 (d, J ) 2.1 Hz, 2 H, H-3), 8.19 (dd, J ) 1.7,
6.0 Hz, 2 H, H-5′), 7.73 (d, 6.0 Hz, 2 H, H-6), 7.52 (dd, J )
1.7, 6.0 Hz, 2 H, H-5), 4.60 (q, J) 7.1 Hz, 4 H, (CO)O-CH′2-
(3) Sun, L.; Hammarstr o¨ m, L.; Norrby, T.; Berglund, H.; Davydov;
R.; Andersson, M.; B o¨ rje, A.; Korall, P.; Philouze, C.; Almgren, M.; Styring,
S.; A° kermark, B. J. Chem. Soc., Chem. Commun. 1997, 607.
CH3), 4.45 (q, J ) 7.1 Hz, 4 H, (CO)O-CH2CH3), 1.54 (t, J )
.1 Hz, 6 H, (CO)O-CH2CH′3), 1.41 (t, J ) 7.1 Hz, 6 H,
(4) Several examples exist where electrostatic forces have been used
7
(
to assemble sensitizers and acceptors at surfactant aggregates. For reviews,
see e.g.: (a) Fox, M. A. Photoinduced Electron-Transfer III; Top. Curr.
Chem.; Springer-Verlag: Berlin, 1991; Vol. 159, p 68. (b) Willner, I,;
Willner, B. Photoinduced Electron-Transfer III; Top. Curr. Chem.;
Springer-Verlag: Berlin, 1991; Vol. 159, p 153. (c) Rabani, J. In Photo-
induced Electron Transfer, Part B; Fox, M. A., Chanon, M., Eds.;
Elsevier: Amsterdam, 1988; p 642. (d) Gr a¨ tzel, M. Heterogeneous
Photochemical Electron Transfer; CRC Press: Boca Raton, FL, 1989. (e)
Matsuo, T. J. Photochem. 1985, 29, 41.
CO)O-CH2CH3). 1 C NMR (125 MHz, CDCl3 as solvent and
3
internal standard): 164.6, 164.0, 160.8, 158.5, 155.6, 152.9,
1
36.8, 135.5, 125.4, 124.9, 122.3, 122.0. 63.0, 62.9, 14.8, 14.6.
II
9: Ru (diester)2(Cl)(X). Another minor product, a pink
species 9 (Rf ≈ 0.93) of point group symmetry C1 was also
1
isolated. By the appearance of the H NMR spectrum, we
1
3
(5) (a) Rehm, O.; Weller, A. Ber. Bunsen-Ges. Phys. Chem. 1969, 73,
34. (b) Kalyanasundaram, K. Coord. Chem. ReV. 1982, 46, 159. (c)
Serpone, N. In Photoinduced Electron Transfer, Part D; Fox, M. A.,
conclude that it contains two inequivalent diester ligands ( C
NMR spectra could not be obtained because of lack of material).
TLC, Rf ≈ 0.93, appears pink on the TLC plate or column gel
8
Chanon, M., Eds.; Elsevier: Amsterdam, 1988; p 47.
(
6) Hammarstr o¨ m, L.; B o¨ rje, A.; Norrby, T., unpublished results.
(
4
vide supra).The UV-visible spectrum (see Figure 3, λmax at
(7) (a) Lange, Y. In The Physical Chemistry of Lipids, Handbook of
08, 547 nm) appears similar to that of 8, with two major bands
Lipid Research; Small, D. M., Ed.; Plenum Press: New York, 1986; Vol.
, p 523. (b) Blume, A. In Phospholipids Handbook; Cevc, G., Ed.; Marcel
in the visible region. The λmax of 9 is blue-shifted ca. 40 nm
compared to that of 8, suggesting that one of the chloride ligands
has been replaced by a ligand that better stabilizes the metal
d-orbitals (HOMO). The molar absorptivity ꢀ could not be
determined due to lack of material but was estimated to be
similar to that of 8 (vide supra) by comparison of the relative
intensities of the π-to-π* transition and the MLCT transitions.
4
Dekker: New York, 1993; p 455. (c) For monolayer values, see refs 7d
and 27 and references therein. (d) Li, L. Patterson, L. K. J. Phys. Chem.
1
995, 99, 16149.
(8) (a) Hammarstr o¨ m, L.; Almgren, M.; Norrby, T. J. Phys. Chem.
1992, 96, 6, 5017. (b) Hammarstr o¨ m, L.; Almgren, M.; Lind, J.; Merenyi,
G.; Norrby, T.; A° kermark, B. J. Phys. Chem. 1993, 97, 10083. (c)
Hammarstr o¨ m, L.; Berglund, H.; Almgren, M. J. Phys. Chem. 1994, 98,
9
588. (d) Hammarstr o¨ m, L.; Almgren, M. J. Phys. Chem. 1995, 99, 11959.
(9) (a) Deisenhofer, J.; Norris, J. R. (Eds) The Photosynthetic Reaction
1
H NMR (CDCl3 as solvent and internal standard): δ 10.41
Centre; Academic Press: San Diego, 1993; Vol. 1-2. (b) Deisenhofer, J.;
Michel, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 8, 829. (c) Huber, R.
Angew. Chem., Int. Ed. Engl. 1989, 28, 848.
(10) (a) Launikonis, A.; Lay, P. A.; Mau, A. W.-H.; Sargeson, A. M.;
Sasse, W. H. F. Aust. J. Chem. 1986, 39, 1053-1062. (b) Sprintschnik, G.;
Sprintschnik, H. W.; Kirsch, P. P.; Whitten, D. G. J. Am. Chem. Soc. 1977,
(dd, J ) 0.7, 5.9 Hz, 1 H, H-6), 10.32 (dd, J ) 0.7, 5.9 Hz, 1
H, H-6), 8.83 (s, J ≈ 0.7, 1.8 Hz (distorted by overlap) 2 H,
H-3 and H-3); 8.71 (dd, J ) 0.7, 1.8 Hz, 1H, H-3), 8.68 (dd, J
)
0.7, 1.8 Hz, 1H, H-3), 8.18 (dd, J ) 1.6, 5.9 Hz, 1H, H-5,
overlapping with peak at δ 8.17), 8.17 (dd, J ) 1.6, 5.9 Hz,
9
9, 4947-4954.
11) (a) Garelli, N.; Vierling, P. J. Org. Chem. 1992, 57, 3046-3051.
(b) Oki, A. M.; Morgan, R. J. Synth. Commun. 1995, 25, 4093-4097.
1
H, H-5, overlapping with peak at δ 8.18), 7.81 (dd, J ) 0.7,
.9 Hz, 1 H, H-6), 7.66 (dd, J ) 0.7, 5.9 Hz, 1 H, H-6), 7.59
(
5