2
26
.
Combining (B.1)–(B.5), we obtain
1
J*(x",…, x , 0) l RH R k Q(y) Hε
k
"
#
q
ε
ε
&
#
,x
q
,x
k
j="
k
1
j
# N
l
k ꢀ Q(x ) RwR ε
0
1
&
2
q
i
q−"
jꢀ 1kQ(x ) w i w i
0
x ,ε x ,ε
1
!
i j
k−"
k
q−"
k Q(y) ꢀ w i
ꢀ w j
&
x ,ε
0
x ,ε
1
i="
j=i+"
θ
σ Q i jQ ε
N+
N
−("+ ) x −x /
jO (ε jε ꢀ e
).
*
ꢀ
i j
References
1
2
3
4
5
6
. A. B, Critical points at infinity in some ariational problems, Research Notes in Mathematics 182
(
. A. B and J. M. C, ‘On a nonlinear elliptic equation involving the Sobolev exponent: the
effect of the topology of the domain’, Comm. Pure Appl. Math. 41 (1988) 253–294.
. V. B and G. C, ‘The effect of the domain topology on the number of positive solutions of
nonlinear elliptic problems’, Arch. Rational Mech. Anal. 114 (1991) 79–93.
. V. B and G. C, ‘The multiple positive solutions of some elliptic problems via the Morse
theory and the domain topology’, Calc. Var. 2 (1994) 29–48.
. D. C and E. S. N, ‘Multiplicity of positive and nodal solutions for nonlinear elliptic
Pitman, 1989).
problems in ꢀN’, Ann. Inst. Henri Poincare
T
13 (1996).
. D. C, N. E. D, E. S. N and S. Y, ‘On the existence and profile of multi-peaked
solutions to singularly perturbed semilinear Dirichlet problems’, Discrete Contin. Dynam.
Systems 2 (1996) 221–236.
7
8
9
. D. C, E. S. N and S. Y, ‘Existence and uniqueness results on single-peaked solutions of
a semilinear problem’, Ann. Inst. H. Poincare 15 (1998) 73–111.
T
. D. C, E. S. N and S. Y, ‘Solutions with multiple ‘‘peaks’’ for nonlinear elliptic
equations’, Proc. Roy. Soc. Edinburgh. Sect. A (1999) 235–264.
. E. N. D, ‘The effect of the domain shape on the number of positive solutions of certain
nonlinear equations II’, J. Differential Equations 87 (1990) 120–156.
0. N. D and S. Y, ‘Multi-peaks solutions for a singularly perturbed Neumann problem’. Pacific
1
1
1
1
1
1
1
J. Math. 189 (1999) 241–262.
1. M. P and P. F, ‘Multi-peak bound states for nonlinear Schro
Inst. H. Poincare Anal. Non Lineaire 15 (1998) 127–149.
2. M. P and P. L. F, ‘Semi-classical states for nonlinear Schro
Anal. 149 (1997) 245–265.
3. A. F and A. W, ‘Nonspreading wave packets for the cubic Schro
a bounded potential’, J. Funct. Anal. 69 (1986) 397–408.
$
dinger equations’. Ann.
dinger equations’, J. Funct.
dinger equations with
T
T
$
$
4. B. G, W. M. N and L. N, ‘Symmetry of positive solutions of nonlinear elliptic
equations in ꢀN’, Ad. Math. Supplementary Studies 7A (1981) 369–402.
$
5. C. G, ‘Existence of multi-bump solutions for nonlinear Schrodinger equations via variational
method’, Comm. Partial Differential Equations 21 (1996) 787–820.
6. M. K. K, ‘Uniqueness of positive solutions for ∆ukujup l 0 in ꢀN’, Arch. Rational Mech.
Anal. 105 (1989) 243–266.
7. Y. Y. L, ‘On a singularly perturbed elliptic equation’, Ad. Differential Equations 2 (1997) 955–980.
1
1
8. G. L and J. W, ‘On nonlinear Schro
$
dinger equations with totally degenerate potentials’, C. R.
Acad. Sci. Paris Ser. 1 326 (1998) 1–7.
T
1
2
2
2
9. W. M. N and J. W, ‘On the location and profile of spike-layer solutions to singularly perturbed
semilinear Dirichlet problems’, Comm. Pure. Appl. Math. 48 (1995) 731–768.
0. E. S. N and S. Y, ‘The effect of the domain geometry in singular perturbation problems’,
Proc. London Math. Soc. 76 (1998) 427–452.
1. E. S. N and S. Y, ‘On the existence and multiplicity of nodal solutions in singular
perturbation problems’, preprint.
2. Y. J. O, ‘Existence of semi-classical bound states of nonlinear Schro
$
dinger equations with potentia
of the class (V) ’, Comm. Partial Differential Equations 13 (1988) 731–768.
α