RESEARCH LETTER
Received 4 December 2015; accepted 20 January 2016.
Published online 23 March 2016.
20. Zou, L. et al. Enhanced reactivity in dioxirane C–H oxidations via strain
release: a computational and experimental study. J. Org. Chem. 78,
4037–4048 (2013).
21. Michaudel, Q. et al. Improving physical properties via C–H oxidation: chemical
and enzymatic approaches. Angew. Chem. Int. Ed. 53, 12091–12096 (2014).
22. McCormick, J. P. & Barton, D. L. Synthetic applications of metal halides.
Conversion of cyclopropylmethanols into homoallylic halides. J. Org. Chem. 45,
2566–2570 (1980).
23. Miyoshi, N., Takeuchi, S. & Ohgo, Y. A facile synthesis of 2,3-dihydroxyketones
from 1,2-diketones and aldehydes using samarium diiodide. Chem. Lett. 22,
959–962 (1993).
24. Krohn, K., Frese, P. & Flörke, U. Biomimetic synthesis of the racemic
angucyclinones of the aquayamycin and WP 3688-2 Types. Chemistry 6,
3887–3896 (2000).
25. Bartsch, H. & Hecker, E. Zur chemie des phorbols, XIII. Über eine acyloin-
umlagerung des 12-desoxy-12-oxo-phorbol-13.20-diacetats. Liebigs Ann.
Chem. 725, 142–153 (1969).
26. Salmond, W. G., Barta, M. A. & Havens, J. L. Allylic oxidation with
3,5-dimethylpyrazole. Chromium trioxide complex. Steroidal Δ5-7-ketones.
J. Org. Chem. 43, 2057–2059 (1978).
27. Sha, C.-K. & Huang, S.-J. Synthesis of β-substituted α-iodocycloalkenones.
Tetrahedr. Lett. 36, 6927–6928 (1995).
28. Stille, J. K. The palladium-catalyzed cross-coupling reactions of organotin
reagents with organic electrophiles. Angew. Chem. Int. Ed. Engl. 25, 508–524
(1986).
29. Nicolaou, K. C. & Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies,
Methods 821 (Wiley, 1996).
1. Wang, H.-B., Wang, X.-Y., Liu, L.-P., Qin, G.-W. & Kang, T.-G. Tigliane diterpenoids
from the euphorbiaceae and thymelaeaceae families. Chem. Rev. 115,
2975–3011 (2015).
2. Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective
C–H oxidations. Nature 459, 824–828 (2009).
3. Foo, K. et al. Scalable, enantioselective synthesis of germacrenes and related
sesquiterpenes inspired by terpene cyclase phase logic. Angew. Chem. Int. Ed.
51, 11491–11495 (2012).
4. Mendoza, A., Ishihara, Y. & Baran, P. S. Scalable enantioselective total synthesis
of taxanes. Nature Chem. 4, 21–25 (2012).
5. Wilde, N. C., Isomura, M., Mendoza, A. & Baran, P. S. Two-phase synthesis of
(−)-taxuyunnanine D. J. Am. Chem. Soc. 136, 4909–4912 (2014).
6. Jørgensen, L. et al. 14-step synthesis of (–)-ingenol from (+)-3-carene. Science
341, 878–882 (2013).
7. McKerrall, S. J., Jørgensen, L., Kuttruff, C. A., Ungeheuer, F. & Baran, P. S.
Development of a concise synthesis of (–)-ingenol. J. Am. Chem. Soc. 136,
5799–5810 (2014).
8. Jin, Y. et al. C–H oxidation of ingenanes enables potent and selective
protein kinase C isoform activation. Angew. Chem. Int. Ed. 54, 14044–14048
(2015).
9. Isakov, N. & Altman, A. Regulation of immune system cell functions by protein
kinase C. Front. Immunol. 4, 384 (2013).
10. McKernan, L. N., Momjian, D. & Kulkosky, J. Protein kinase C: one pathway
towards the eradication of latent HIV-1 reservoirs. Adv. Virol. 2012, 805347
(2012).
11. Mackay, H. J. & Twelves, C. J. Targeting the protein kinase C family:
are we there yet? Nature Rev. Cancer 7, 554–562 (2007); corrigendum 8,
doi:10.1038/nrc2350 (2008).
30. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis.
Chem. Soc. Rev. 40, 1976–1991 (2011).
12. Wender, P. A. et al. Studies on tumor promoters. 8. The synthesis of phorbol.
J. Am. Chem. Soc. 111, 8957–8958 (1989).
13. Wender, P. A., Lee, H. Y., Wilhelm, R. S. & Williams, P. D. Studies on tumor
promoters. 7. The synthesis of a potentially general precursor of the
tiglianes, daphnanes, and ingenanes. J. Am. Chem. Soc. 111, 8954–8957
(1989).
Acknowledgements This work was supported by LEO Pharma, the Uehara
Memorial Foundation (postdoctoral fellowship to S.K.) and the National Institute
of General Medical Sciences Grant GM-097444. We are especially grateful
to S. Natarajan of KemXtree and his team for providing ample quantities of
compound 5. We thank D.-H. Huang and L. Pasternack for assistance with NMR
spectroscopy, and A. L. Rheingold and C. E. Moore for X-ray crystallographic
analysis.
14. Wender, P. A., Rice, K. D. & Schnute, M. E. The first formal asymmetric synthesis
of phorbol. J. Am. Chem. Soc. 119, 7897–7898 (1997).
15. Wender, P. A. & McDonald, F. E. Studies on tumor promoters. 9. A second-
generation synthesis of phorbol. J. Am. Chem. Soc. 112, 4956–4958 (1990).
16. Lee, K. & Cha, J. K. Formal synthesis of (+)-phorbol. J. Am. Chem. Soc. 123,
5590–5591 (2001).
Author Contributions S.K. and P.S.B. conceived this work; J.F. provided
compound 5; S.K., H.C. and P.S.B. designed the experiments and analysed that
data; S.K. and H.C. conducted the experiments; S.K. performed the molecular
mechanics calculations; and S.K. and P.S.B. wrote the manuscript.
17. Sugita, K., Shigeno, K., Neville, C. F., Sasai, H. & Shibasaki, M. Synthetic studies
towards phorbols: synthesis of B or C ring substituted phorbol skeletons in the
naturally occurring form. Synlett 1994, 325–329 (1994).
18. Sugita, K., Neville, C. F., Sodeoka, M., Sasai, H. & Shibasaki, M. Stereocontrolled
syntheses of phorbol analogs and evaluation of their binding affinity to PKC.
Tetrahedr. Lett. 36, 1067–1070 (1995).
Author Information Metrical parameters for the structures of 12 and 19 are
(CCDC) under reference numbers 1434376 and 1434377. Reprints and
declare no competing financial interests. Readers are welcome to comment
19. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond
oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).
4
| N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 6
© 2016 Macmillan Publishers Limited. All rights reserved