Organic Letters
Letter
(
5) For enzymatic site-selective modifications of polyol compounds,
■
see: (a) Park, H. G.; Do, J. H.; Chang, H. N. Biotechnol. Bioprocess
Eng. 2003, 8, 1−8. (b) Gonzalez-Sabin, J.; Moran-Ramallal, R.;
Rebolledo, F. Chem. Soc. Rev. 2011, 40, 5321−5335.
Moshe Portnoy − School of Chemistry, Raymond and Beverly
(6) (a) Giuliano, M. W.; Miller, S. J. Site-Selective Reactions with
Peptide-Based Catalysts. In Site-Selective Catalysis; Kawabata, T., Ed.;
Springer: Cham, Switzerland, 2016; pp 157−201. (b) Yamanaka, M.;
Yoshida, U.; Sato, M.; Shigeta, T.; Yoshida, K.; Furuta, T.; Kawabata,
T. J. Org. Chem. 2015, 80, 3075−3082. (c) Imayoshi, A.; Yamanaka,
M.; Sato, M.; Yoshida, K.; Furuta, T.; Ueda, Y.; Kawabata, T. Adv.
Synth. Catal. 2016, 358, 1337−1344.
Natali Ashush − School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
(7) (a) Wilcock, B. C.; Uno, B. E.; Bromann, G. L.; Clark, M. J.;
Anderson, T. M.; Burke, M. D. Nat. Chem. 2012, 4, 996−1003.
(b) Kattnig, E.; Albert, M. Org. Lett. 2004, 6, 945−948.
6
Reut Fallek − School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
(8) For examples of amphiphilic dendritic molecules, including Janus
dendrimers, see: (a) Ramireddy, R. R.; Raghupathi, K. R.; Torres, D.
A.; Thayumanavan, S. New J. Chem. 2012, 36, 340−349. (b) Roche,
C.; Percec, V. Isr. J. Chem. 2013, 53, 30−44. (c) Raghupathi, K. R.;
Guo, J.; Munkhbat, O.; Rangadurai, P.; Thayumanavan, S. Acc. Chem.
Res. 2014, 47, 2200−2211. (d) García-Gallego, S.; Nystro
Malkoch, M. Prog. Polym. Sci. 2015, 48, 85−110. (e) Amir, R. Synlett
6
Amit Fallek − School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
6
̈
m, A. M.;
Roman Dobrovetsky − School of Chemistry, Raymond and
2
015, 26, 2617−2622. (f) d’Arcy, R.; Burke, J.; Tirelli, N. Adv. Drug
Delivery Rev. 2016, 107, 60−81. (g) Cao, Y.; Liu, X.; Peng, L. Front.
Chem. Sci. Eng. 2017, 11, 663−675. (h) Taabache, S.; Bertin, A.
Polymers 2017, 9, 280.
(
̈
9) (a) Furstner, A. Eur. J. Org. Chem. 2004, 2004, 943−958.
(
b) Volmer, A. A.; Szpilman, A. M.; Carreira, E. M. Nat. Prod. Rep.
2
010, 27, 1329−1349. (c) Govindarajan, M. Eur. J. Med. Chem. 2018,
Notes
1
43, 1208−1253. (d) Arsic, B.; Barber, J.; Cikos, A.; Mladenovic, M.;
Stankovic, N.; Novak, P. Int. J. Antimicrob. Agents 2018, 51, 283−298.
The authors declare no competing financial interest.
(
10) In the case of an amphiphilic amphotericin B derivative (ref
7
a), only hydroxy groups in the polar region were targeted.
ACKNOWLEDGMENTS
■
(11) (a) Kamijo, T.; Yamamoto, R.; Harada, H.; Iizuka, K. Chem.
Pharm. Bull. 1983, 31, 3724−3727. (b) Kosugi, Y.; Akakura, M.;
Ishihara, K. Tetrahedron 2007, 63, 6191−6203. (c) Ibe, K.; Hasegawa,
Y.-s.; Shibuno, M.; Shishido, T.; Sakai, Y.; Kosaki, Y.; Susa, K.;
Okamoto, S. Tetrahedron Lett. 2014, 55, 7039−7042.
(
2
(
This research was supported by the Israel Science Foundation
(
Grant 955/10) and the United States−Israel Binational
Science Foundation (BSF) (Grant 2012193). We thank Dr.
Maria Kramer (Tel Aviv University) for assistance in the
characterization of one of the intermediates.
12) Karabline-Kuks, J.; Ramesh, P.; Portnoy, M. Adv. Synth. Catal.
016, 358, 3541−3554.
13) Site selectivity, i.e., differentiation between the same functional
REFERENCES
group in different stereoelectronic environments, is sometimes
considered as a subtype of chemoselectivity, i.e., differentiation
between different functional groups with similar reactivity patterns.
For instance, see ref 1 and: Afagh, N. A.; Yudin, A. K. Angew. Chem.,
Int. Ed. 2010, 49, 262−310.
■
(
1) (a) Site-Selective Catalysis; Kawabata, T., Ed.; Springer: Cham,
Switzerland, 2016. (b) Huang, Z.; Dong, G. Acc. Chem. Res. 2017, 50,
65−471.
2) (a) Shugrue, C. R.; Miller, S. J. Chem. Rev. 2017, 117, 11894−
1951. (b) Robles, O.; Romo, D. Nat. Prod. Rep. 2014, 31, 318−334.
c) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193−205.
3) For recent reviews, see: (a) Ueda, Y.; Kawabata, T. Organo-
4
(
1
(
14) A closely related second-generation catalyst G2(C6) with
shorter n-hexyl terminal appendages replacing the n-dodecyl tails,
which was prepared in an analogous way, exhibited performance
similar to that of G2(C12) and thus was excluded from this
communication.
(
(
catalytic Site-Selective Acylation of Carbohydrates and Polyol
Compounds. In Site-Selective Catalysis; Kawabata, T., Ed.; Springer:
Cham, Switzerland, 2016; pp 203−231. (b) Song, W. Z.; Zheng, N. J.
Carbohydr. Chem. 2017, 36, 143−161. (c) Wang, H. Y.; Blaszczyk, S.
A.; Xiao, G. Z.; Tang, W. P. Chem. Soc. Rev. 2018, 47, 681−701.
(15) While for a number of reasons butyric anhydride and benzene
were chosen as the acylating agent and the solvent, respectively, for
the model reaction, experiments with acetic anhydride as the acylating
agent or THF as the solvent under conditions otherwise equivalent to
those in Table 1 demonstrated similar selectivity trends (Table S1).
(16) The yields were determined by HPLC monitoring.
(17) Preliminary experiments with acetic anhydride or benzoic
anhydride as the acylating agent under conditions otherwise
equivalent to those in entries 2 and 6 of Table 2 demonstrated
(18) The full extent of these studies will be published elsewhere;
herein we describe only findings most relevant to the experiments
with diol substrates 1 and 5.
(19) (a) Kawabata, T.; Furuta, T. Chem. Lett. 2009, 38, 640−647.
(b) Yoshida, K.; Furuta, T.; Kawabata, T. Angew. Chem., Int. Ed. 2011,
50, 4888−4892.
(20) (a) Kruger, H. G. J. Mol. Struct.: THEOCHEM 2002, 577, 281−
285. (b) Petrova, T.; Okovytyy, S.; Gorb, L.; Leszczynski, J. J. Phys.
(
(
4
2
d) Dimakos, V.; Taylor, M. S. Chem. Rev. 2018, 118, 11457−11517.
e) Blaszczyk, S. A.; Homan, T. C.; Tang, W. P. Carbohydr. Res. 2019,
71, 64−77. (f) Shang, W. D.; He, B.; Niu, D. W. Carbohydr. Res.
019, 474, 16−33.
(
4) For additional recent examples, see: (a) Yamada, T.; Suzuki, K.;
Hirose, T.; Furuta, T.; Ueda, Y.; Kawabata, T.; Omura, S.; Sunazuka,
T. Chem. Pharm. Bull. 2016, 64, 856−864. (b) Yanagi, M.; Ninomiya,
R.; Ueda, Y.; Furuta, T.; Yamada, T.; Sunazuka, T.; Kawabata, T.
Chem. Pharm. Bull. 2016, 64, 907−912. (c) Sakurai, K.; Hiraizumi,
M.; Isogai, N.; Komatsu, R.; Shibata, T.; Ohta, Y. Chem. Commun.
2
017, 53, 517−520. (d) Nishikawa, Y.; Takemoto, K.; Matsuda, K.;
Tanaka, R.; Arashima, A.; Ito, K.; Kamezawa, Y.; Hori, Y.; Hara, O.
Org. Lett. 2018, 20, 3367−3371. (e) Shimada, N.; Nakamura, Y.;
Ochiai, T.; Makino, K. Org. Lett. 2019, 21, 3789−3794. (f) Li, J.;
Grosslight, S.; Miller, S. J.; Sigman, M. S.; Toste, F. D. ACS Catal.
2
019, 9, 9794−9799.
E
Org. Lett. XXXX, XXX, XXX−XXX