Paper
RSC Advances
times, followed by drying under vacuum before the next run. As
shown in Fig. 9, the catalyst BAIL@SBA-15 can be readily
9 H. H. Wu, F. Yang, P. Cui, J. Tang and M. Y. He, Tetrahedron
Lett., 2004, 45, 4963–4965.
recovered and reused ve times without signicant loss of 10 X. Liang and C. Qi, Catal. Commun., 2011, 12, 808–812.
activity. And the conversion and selectivity were 77.4% and 11 J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508–3576.
9
2.0%, respectively.
The recovered catalyst that reused for ve times has no obvious
12 P. Wasserscheid, M. Sesing and W. Korth, Green Chem.,
2002, 4, 134–138.
change in structure, referring to the FT-IR spectrum in comparison 13 J. P. B. Atef Arfan, Org. Process Res. Dev., 2005, 9, 743–748.
with fresh catalyst listed in Fig. 1(b). Measuring by elemental 14 S. Sahoo, P. Kumar, F. Lefebvre and S. B. Halligudi, Appl.
analysis, the graing amount of ionic liquid on BAIL@SBA-15
Catal., A, 2009, 354, 17–25.
ꢁ
1
ꢁ1
decreased from 1.5342 mmol g
to 0.4820 mmol g
aer 15 C. Feher, E. Krivan, J. Hancsok and R. Skoda-Foeldes, Green
ꢁ
being used for 5 times. It was found that the loss of anion HSO4
may be the main reason for the decrease in catalytic activity.
Chem., 2012, 14, 403–409.
16 W. Chen, Y. Zhang, L. Zhu, J. Lan, R. Xie and J. You, J. Am.
Chem. Soc., 2007, 129, 13879–13886.
1
7 J. Miao, H. Wan, Y. Shao, G. Gua and B. Xu, J. Mol. Catal. A:
Chem., 2010, 348, 77–82.
4
. Conclusions
In summary, a series of mesoporous materials SBA-15 and amor- 18 P. Sharma and M. Gupta, Green Chem., 2015, 17, 1100–1106.
phous SiO supported acidic ionic liquids were synthesized by 19 Z. Wu, Z. Li, G. Wu, L. Wang, S. Lu, L. Wang, H. Wan and
chemical covalent bond. On the basis of characterization results,
G. Guan, Ind. Eng. Chem. Res., 2014, 53, 3040–3046.
the Brønsted acidic ionic liquid [BSmim][HSO ] was proved to be 20 Z. M. Li, Y. Zhou, D. J. Tao, W. Huang, X. S. Chen and
2
4
successfully immobilized onto mesoporous materials and the
results show that BAIL@SBA-15 is more active in the ketalization 21 H. Jin, M. B. Ansari and S. E. Park, Catal. Today, 2015, 245,
reaction. The conversion of cyclohexanone can reach 85.2% and 116–121.
the amount of catalyst is reduced greatly compared with pure ionic 22 M. Wysocka-Zolopa, I. Zablocka, A. Basa and K. Winkler,
liquids. The experiment demonstrated that the optimum reaction Chem. Heterocycl. Compd., 2017, 53, 78–86.
Z. Yang, RSC Adv., 2014, 4, 12160–12167.
conditions for the ketalization of cyclohexanone with glycol is 1.3% 23 Y. Wan and D. Zhao, Chem. Rev., 2007, 107, 2821–2860.
of BAIL@SBA-15 as catalyst, initial molar ratio of EG : CYC was 2 24 W. Xie and C. Zhang, Food Chem., 2016, 211, 74–82.
ꢀ
and reaction temperature is 50 C for 3 h. The possible mechanism 25 B. Lebeau, A. Galarneau and M. Linden, Chem. Soc. Rev.,
for hydrogen bond between anion of ionic liquid and support and
2013, 42, 3661–3662.
general reaction mechanism for ketalization reaction was given. 26 K. A. Shah, J. K. Parikh and K. C. Maheria, Catal. Today, 2014,
Furthermore, the supported ionic liquids can be easily recovered
237, 29–37.
for ve times without a signicant loss of catalytic activity.
27 H. Zhao, N. Yu, Y. Ding, R. Tan, C. Liu, D. Yin, H. Qiu and
D. Yin, Microporous Mesoporous Mater., 2010, 136, 10–17.
2
8 S. Udayakumar, S. W. Park, D. W. Park and B. S. Choi, Catal.
Commun., 2008, 9, 1563–1570.
Conflicts of interest
There are no conicts to declare.
29 Z. Alothman, Materials, 2012, 5, 2874–2902.
30 F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu and D. Zhao,
J. Phys. Chem. B, 2005, 109, 8723–8732.
Acknowledgements
3
1 C. Pirez, A. F. Lee, J. C. Manayil, C. M. A. Parlett and
K. Wilson, Green Chem., 2014, 16, 4506–4509.
We gratefully acknowledge the National Natural Science Foun-
dation of China (No. 21473225).
32 J. N. Appaturi, M. R. Johan, R. J. Ramalingam and H. A. Al-
Lohedan, Microporous Mesoporous Mater., 2018, 256, 67–74.
3
3 D. Zhao, J. Sun, Q. Li and G. D. Stucky, Chem. Mater., 2000,
Notes and references
12, 275–279.
1
Y. Y. Jiang, G. N. Wang, Z. Zhou, Y. T. Wu, J. Geng and 34 J. Qin, B. Li and D. Yan, Crystals, 2017, 7, 89–100.
Z. B. Zhang, Chem. Commun., 2008, 505–507.
35 K. Arya, D. S. Rawat and H. Sasai, Green Chem., 2012, 14,
1956–1963.
36 W. Wang, L. Shao, W. Cheng, J. Yang and M. He, Catal.
Commun., 2008, 9, 337–341.
2
D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin
and M. Gratzel, Angew. Chem., 2008, 47, 1923–1927.
A. S. Amarasekara, Chem. Rev., 2016, 116, 6133–6183.
3
4
D. Fang, K. Gong, Q. Shi and Z. Liu, Catal. Commun., 2007, 8, 37 Y. Gu, F. Shi and Y. Deng, Catal. Commun., 2003, 4, 597–601.
1
463–1466.
H. Xing, T. Wang, Z. Zhou and Y. Dai, J. Mol. Catal. A: Chem.,
007, 264, 53–59.
T. Welton, Coord. Chem. Rev., 2004, 248, 2459–2477.
38 J. Yang, T. Zeng, D. Cai, L. Li, W. Tang, R. Hong and T. Qiu,
Asia-Pac. J. Chem. Eng., 2016, 11, 901–909.
39 K. Qiao, H. Hagiwara and C. Yokoyama, J. Mol. Catal. A:
Chem., 2006, 246, 65–69.
5
2
6
7
A. C. Cole and J. L. Jensen, J. Am. Chem. Soc., 2002, 124, 5962– 40 Z. Xu, H. Wan, J. Miao, M. Han, C. Yang and G. Guan, J. Mol.
963. Catal. A: Chem., 2010, 332, 152–157.
R. Sugimura, K. Qiao, D. Tomida and C. Yokoyama, Catal. 41 B. Thomas, S. Prathapan and S. Sugunan, Microporous
Commun., 2007, 8, 770–772. Mesoporous Mater., 2005, 80, 65–72.
5
8
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 7179–7185 | 7185