376
J. Grzegorzek et al. / Journal of Molecular Structure 976 (2010) 371–376
The weakening of the OAHꢁ ꢁ ꢁN hydrogen bond in a trans form is
References
also responsible for the lower frequency of the vibration with rel-
atively large contribution of the CAO stretching vibration in this
conformer as compared to a gauche one (1249.9, 805.1 cmꢀ1, for
a trans versus 1253.8, 807.3 cmꢀ1 for a gauche). The stronger intra-
molecular OAHꢁ ꢁ ꢁN bond might be due to a stronger conjugation of
the two halves of the azine in a trans form.
[1] V.M. Kolb, A.C. Kuffel, H.O. Spiwek, T.E. Janota, J. Org. Chem. 54 (1989)
2771.
[2] T.W. Bell, A.T. Papoulis, Angew. Chem. Int. Ed. Engl. 31 (1992) 749.
[3] P. Espinet, J. Etxebarria, M. Marcos, J. Perez, A. Remon, J.L. Serrano, Angew.
Chem. Int. Ed. Engl. 28 (1989) 1065.
[4] D.S. Dudis, A.T. Yeates, D. Kost, D.A. Smith, J. Medrano, J. Am. Chem. Soc. 115
(1993) 8770.
[5] J. Barluenga, M.J. Iglesias, V. Gotor, J. Chem. Soc. Chem. Commun. (1987) 582.
and references therein.
The effect of rearrangement on the other frequencies of APA is
less obvious.
[6] I. Ikeda, Y. Kogame, M. Okahara, J. Org. Chem. 50 (1985) 3640.
[7] D. Bardley, Science 261 (1993) 1272.
5. Conclusions
[8] G.S. Chen, J.K. Wilbur, Ch.L. Barnes, R. Glaser, J. Chem. Soc. Perkin Trans. 2
(1995) 2311.
[9] W. Tang, Y. Xiang, A. Tong, J. Org. Chem. 74 (2009) 2163.
[10] G.S. Chen, M. Anthamatten, Ch.L. Barnes, R. Glaser, J. Org. Chem. 59 (1994)
4336.
[11] G.S. Chen, M. Anthamatten, Ch.L. Barnes, R. Glaser, Angew. Chem. Int. Ed. Engl.
33 (1994) 1081. and references therein.
[12] T.G.D. van Schalkwyk, A.M. Stephen, ARKIVOC 13 (2005) 109.
[13] V.B. Kobychev, N.M. Vitkovskaya, N.V. Pavlova, E.Yu. Schmidt, B.A. Trofimov, J.
Struct. Chem. 45 (2004) 748.
[14] F. Blanco, I. Alkorta, J. Elguero J. Mol. Struct. (THEOCHEM) 847 (2007) 25.
[15] I. Alkorta, F. Blanco, J. Elguero ARKIVOC 7 (2008) 48.
[16] B.A. El-Sayed, M.M. Abo Aly, A.A.A. Emara, S.M.E. Khalil, Vibrational Spectr. 30
(2002) 93.
[17] A.H. Ammar, B.A. El-Sayed, E.A. El-Sayed, J. Mater. Sci. 37 (2002) 3255.
[18] H. Höpfl, N. Farfán, Can. J. Chem. 76 (1998) 1853.
[19] M. Ziółek, K. Filipczak, A. Maciejewski, Chem. Phys. Lett. 464 (2008) 181. and
references therein.
[20] X.S. Tai, J. Xu, Y.M. Feng, Z.P. Liang, Acta Cryst. E64 (2008) 0905.
[21] M.M. Abo Aly, Spectrochim. Acta A 55 (1999) 1711.
[22] A.J. Barnes, J. Mol. Struct. 113 (1984) 161.
The DFT/B3LYP/6-311++G(2d,2p) calculations show that the
two lowest energy minima on the potential energy surface of
20-hydroxyacetophenone azine (APA) correspond to two
C@NAN@C conformational isomers of E/E configuration of APA,
namely to s-trans conformer and to a gauche one. The performed
calculations demonstrate that the two conformers have very close
energies and are separated by very low barrier. A gauche conformer
is more stable by 0.66 kJ molꢀ1 taking electronic energies (E) as a
criterion of stability, however including ZPVE correction (EZPVE
)
leads to a reverse of the energy order and s-trans becomes more
stable by 0.09 kJ molꢀ1 than a gauche conformer. Potential-energy
profile around C@NAN@C angle, based on E, results in energy bar-
rier of 1.06 kJ molꢀ1 when going from a gauche conformer to a s-
trans one.
FTIR spectra of APA isolated in argon matrices evidence that
both s-trans and gauche conformers are present in the matrix and
exhibit reversible interconversion at matrix temperatures 9–32 K.
The comparison of the experimental spectra with the theoretical
ones calculated for the two conformers and reversible temperature
dependence of the bands intensities allowed us to obtain the spec-
troscopic characteristics of a s-trans and a gauche conformer. The
temperature dependence of the bands intensities also demon-
strated that a gauche isomer is more stable than a trans one. The
spectra analysis shows that most sensitive to conformational rear-
rangement are hydrogen bond vibrations. The intramolecular
OAHꢁ ꢁ ꢁN hydrogen bond is weakened when APA is converted from
a trans to a gauche conformer.
[23] B.S. Furnuss, A.J. Hannaford, P.W.G. Smith, A. Tatchell, Vogel’s Textbook of
Practical Organic Chemistry, Longmans, New York, 1989.
[24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M.
Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X.
Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.
Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg,
V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick,
A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.
Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford
CT, 2004.
[25] S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.
[26] J.M.L. Martin, C. Van Alsenoy, Gar2ped, University of Antwerp, 1995.
[27] K. Kownacki, Ł. Kaczmarek, A. Grabowska, Chem. Phys. Lett. 210 (1993) 373.
Acknowledgements
´
[28] K. Kownacki, A. Mordzinski, R. Wilbrandt, A. Grabowska, Chem. Phys. Lett. 227
The research was supported by the Polish Ministry of Science
and Higher education (Grant N N204 020 340837). We gratefully
acknowledge a grant of computer time from the Wrocław Center
for Networking and Supercomputing (WCSS).
(1994) 270.
[29] I.D. Reva, A.J. Lopes Jesus, M.T. Rosado, R. Fausto, M.E. Eusébio, J.S. Redinha,
Phys. Chem. Chem. Phys. 8 (2006) 5339.
[30] A. Borba, A. Gómez-Zavaglia, R. Fausto, J. Mol. Struct. 794 (2006) 196.
[31] J. Paja˛k, G. Maes, W.M. De Borggraeve, N. Boens, A. Filarowski, J. Mol. Struct.
844–845 (2007) 83.
[32] A.J. Barnes, T.J. Beech, Z. Mielke, J. Chem. Soc. Faraday Trans. 2 (80) (1984)
465.
Appendix A. Supplementary material
[33] A.J. Barnes, A.C. Legon, J. Mol. Struct. 448 (1998) 101.
[34] L. Andrews, X. Wang, Z. Mielke, J. Phys. Chem. A 105 (2001) 6054.
Supplementary data associated with this article can be found, in