8
WU ET AL.
ACKNOWLEDGMENTS
pyridine (26 mL, 315 mmol, 33.2 equiv) over a period of
10 min. After stirring at room temperature for 32 h, the reac-
tion mixture was concentrated to dryness under reduced
pressure. The residue was redissolved in CH2Cl2, and the
solution was washed with saturated aqueous NaHCO3 solu-
tion (2 × 50 mL) and 1 N HCl (2 × 50 mL). The organic
phase was dried over MgSO4, filtered, and concentrated to
afford the desired compound 1 (3.33 g, 98%) as a white
We thank Claire Yang (Institute of Chemistry, Academia
Sinica) for preparing the manuscript. This work was
supported by the grant MOST 105-2113-M-011-022 from
the Ministry of Science and Technology.
REFERENCES
[1] P. V. Piazza, M. Le Moal, Brain Res. Brain Res. Rev. 1997, 25, 359.
[2] E. R. de Kloet, M. Joels, F. Holsboer, Nat. Rev. Neurosci. 2005, 6, 463.
[3] B. S. McEwen, P. J. Gianaros, Annu. Rev. Med. 2011, 62, 431.
[4] C. Sandi, Nat. Rev. Neurosci. 2004, 5, 917.
1
solid. M.p. 145–148ꢀC. H and 13C NMR spectra and 2D
COSY and HSQC spectra were acquired, see Figures S1–S4.
1H and 13C chemical shifts (see Table S1) and the melting
points are consistent with those reported in the litera-
ture. [45,46]
[5] R. C. Agis-Balboa, G. Pinna, A. Zhubi, E. Maloku, M. Veldic, E. Costa,
A. Guidotti, Proc. Natl. Acad. Sci. USA 2006, 103, 14602.
[6] E. E. Baulieu, P. Robel, M. Schumacher, Int. Rev. Neurobiol. 2001, 46, 1.
[7] N. A. Compagnone, S. H. Mellon, Front. Neuroendocrinol. 2000, 21, 1.
[8] R. C. Melcangi, A. G. Mensah-Nyagan, Neurochem. Int. 2008, 52, 503.
[9] K. Shibuya, N. Takata, Y. Hojo, A. Furukawa, N. Yasumatsu, T. Kimoto,
T. Enami, K. Suzuki, N. Tanabe, H. Ishii, H. Mukai, T. Takahashi,
T. A. Hattori, S. Kawato, Biochim. Biophys. Acta 2003, 1619, 301.
[10] J. J. Lambert, D. Belelli, D. R. Peden, A. W. Vardy, J. A. Peters, Prog.
Neurobiol. 2003, 71, 67.
3.5 | (3S,20R)-Acetoxypregn-5-en-20-ol (2)
Sodium borohydride (0.11 g, 2.79 mmol, 1 equiv) was
slowly added to
a
cold (0ꢀC) solution of (3s)-
acetoxypregn-5-en-20-one (1) (1.0 g, 2.79 mmol, 1 equiv)
in methanol (30 mL) and CH2Cl2 (5 mL). After stirring
for 1.25 h in an ice bath, the reaction was quenched with
saturated aqueous NH4Cl solution and extracted with
CH2Cl2 (2 × 50 ml). The combined organic extracts were
washed with saturated aqueous NaHCO3 solution and
brine, dried over MgSO4, filtered, and concentrated under
reduced pressure. The residue was purified by column
chromatography on silica gel (hexane/EtOAc, 3:1) to
afford the desired compound 2 (0.82 g, 82%) as a white
solid. Melting point 152–155ꢀC. 1H and 13C NMR spectra
and the 2D COSY and HSQC spectra were determined,
see Figures S5–S8. 1H and 13C chemical shifts (see
Table S2) and the m.p. were consistent with that of the
20(R) form reported in the literature.[47]
[11] J. J. Lambert, M. A. Cooper, R. D. Simmons, C. J. Weir, D. Belelli,
Psychoneuroendocrinology 2009, 34(Suppl 1), S48.
[12] M. Sedlacek, M. Korinek, M. Petrovic, O. Cais, E. Adamusova,
H. Chodounska, L. Vyklicky Jr. , Physiol. Res. 2008, 57(Suppl 3), S49.
[13] A. I. Czlonkowska, P. Krzascik, H. Sienkiewicz-Jarosz, M. Siemiatkowski,
J. Szyndler, A. Bidzinski, A. Plaznik, Pharmacol. Biochem. Behav. 2000,
67, 345.
[14] M. Vallee, W. Mayo, G. F. Koob, M. Le Moal, Int. Rev. Neurobiol. 2001,
46, 273.
[15] M. Bianchi, E. E. Baulieu, Proc. Natl. Acad. Sci. USA 2012, 109, 1713.
[16] L. Guth, Z. Zhang, E. Roberts, Proc. Natl. Acad. Sci. USA 1994, 91,
12308.
[17] K. Murakami, A. Fellous, E.-E. Baulieu, P. Robel, Proc. Natl. Acad. Sci.
USA 2000, 97, 3579.
[18] V. Suitchmezian, I. Jess, J. Sehnert, L. Seyfarth, J. Senker, C. Näther, Cryst.
Growth Des. 2008, 8, 98.
[19] S. Swallow, Progr. Med. Chem. 2015, 54, 65.
[20] M. Bianchi, J. J. Hagan, C. A. Heidbreder, Curr. Drug Targets CNS Neu-
rol. Disord. 2005, 4, 597.
[21] M. Bianchi, A. J. Shah, K. C. Fone, A. R. Atkins, L. A. Dawson,
C. A. Heidbreder, M. E. Hows, J. J. Hagan, C. A. Marsden, Synapse, 2009,
63, 359.
[22] R. C. Melcangi, L. M. Garcia-Segura, A. G. Mensah-Nyagan, Cell. Mol.
Life Sci.: CMLS 2008, 65, 777.
4
| CONCLUSIONS
To unravel the Mg2+ binding sites of the neurosteroid, we
have applied high-resolution 13C CP/MAS NMR spectros-
copy to DHEA and its analogs 1 and 2. The side chain
attached to C17 and the substituent attached to C3 were
modified in 1 and 2. In DHEA, the most perturbed C atom
was found to be C17, suggesting the C17–O double bond to
be responsible for the interaction with Mg2+. In these DHEA
analogs, unlike DHEA, the most perturbed C atom was
found to be C6 in ring B, suggesting that the C5–C6 double
bond of distinct π-electron character is responsible for the
interaction. In this solid-state NMR study, we demonstrated
that DHEA possesses two Mg2+ binding sites, that is, C17–
O and C5–C6 double bonds, acting in a competitive manner.
The Mg2+ binding of C17–O is mediated by the cation/lone-
pair electron interaction, whereas the binding of C5–C6 is
through cation/π interaction, in which the former has a
higher binding affinity (at least three times stronger) than the
latter.
[23] A. H. Payne, D. B. Hales, Endocr. Rev. 2004, 25, 947.
[24] R. H. Purdy; A. L. Morrow; J. R. Blinn; S. Paul. J. Med. Chem. 1990, 33,
1572.
[25] M. Vallee, S. Vitiello, L. Bellocchio, E. Hebert-Chatelain, S. Monlezun,
E. Martin-Garcia, F. Kasanetz, G. L. Baillie, F. Panin, A. Cathala, et al.,
Science 2014, 343, 94.
[26] J. J. Haddad, Prog. Neurobiol. 2005, 77, 252.
[27] G. A. Eby, K. L. Eby, Med. Hypotheses 2006, 67, 362.
[28] K. M. Kantak, M. A. Edwards, T. P. O'Connor, Pharmacol. Biochem.
Behav. 1998, 59, 159.
[29] K. Paradowska, I. Wawer, J. Pharm. Biomed. Anal. 2014, 93, 27.
[30] M. P. Marsan, I. Muller, C. Ramos, F. Rodriguez, E. J. Dufourc,
J. Czaplicki, A. Milon, Biophys. J. 1999, 76, 351.
[31] M. P. Marsan, W. Warnock, I. Muller, Y. Nakatani, G. Ourisson, A. Milon,
J. Org. Chem. 1996, 61, 4252.
[32] I. Schuler, A. Milon, Y. Nakatani, G. Ourisson, A. M. Albrecht,
P. Benveniste, M. A. Hartman, Proc. Natl. Acad. Sci. USA 1991, 88, 6926.
[33] O. Soubias, F. Jolibois, S. Massou, A. Milon, V. Reat, Biophys. J. 2005,
89, 1120.
[34] D. L. Gater; V. Réat, G. Czaplicki, O. Saurel, F. Jolibois, V. Cherezov,
A. Milon, Langmuir 2013, 29, 8031.
[35] O. Soubias; F. Jolibois, V. Reat, A. Milon, Chemistry 2004, 10, 6005.
[36] O. Soubias, F. Jolibois, V. Réat, A. Milon, Chem. Eur. J. 2004, 10, 6005.