4
750
A. M. Maj et al. / Tetrahedron Letters 53 (2012) 4747–4750
in an excellent yield (100%) and with a high enantioselectivity of
7% with Segphos L10 (entry 3). By lowering temperature to 0 °C,
the ee could be increased up to 91% with always a complete con-
5. Examples of Iridium catalyzed hydrogenation of quinolines assisted by I2: (a)
Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc.
8
2
2
003, 125, 10536–10537; (b) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal.
004, 346, 909–912; (c) Reetz, M. T.; Li, X. Chem. Commun. 2006, 2159–2160;
version (entry 4).
In conclusion we have developed the highly enantioselective
asymmetric hydrogenation of a range of 2-functionalized quino-
(d) Chan, S.-H.; Lam, K.-H.; Li, Y.-M.; Xu, L.-J.; Tang, W.-J.; Lam, F. L.; Lo, W. H.;
Yu, W. Y.; Fan, Q.-H.; Chan, A. S. C. Tetrahedron: Asymmetry 2007, 18, 2625–
2631; (e) Lam, K. H.; Xu, L.-J.; Feng, L. C.; Fan, Q.-H.; Lam, F. L.; Lo, W.-H.; Chan,
A. S. C. Adv. Synth. Catal. 2005, 347, 1755–1759; (f) Tang, W.-J.; Zhu, S.-F.; Xu, L.-
J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.-H.; Chan, A. S. C. Chem. Commun.
2
lines using Ir/bisphosphine/I based catalytic systems. It has been
2007, 613–615; (g) Xu, L.-J.; Lam, K.-H.; Ji, J.; Wu, J.; Fan, Q.-H.; Lo, W.-H.; Chan,
shown that this type of catalytic system tolerates esters and hydro-
xy groups. We demonstrate here that it is also the case for nitrogen
and bromide substituents. This methodology provides an access to
synthetically useful chiral tetrahydroquinolines with excellent
enantioselectivities especially for substrates 2 and 7, the latter pro-
viding interesting building blocks for synthesis. Further investiga-
tions on 2-functionalized quinolines will be reported in due course.
A. S. C. Chem. Commun. 2005, 1390–1392; (h) Yamagata, T.; Tadaoka, H.;
Nagata, M.; Hirao, T.; Kataoka, Y.; Ratovelomanana-Vidal, V.; Genet, J.-P.;
Mashima, K. Organometallics 2006, 25, 2505–2513; (i) Tang, W.-J.; Tan, J.; Xu, L.-
J.; Lam, K.-H.; Fan, Q.-H.; Chan, A. S. C. Adv. Synth. Catal. 2010, 352, 1055–1062;
(
2
j) Wang, D.-S.; Zhou, J.; Wang, D.-W.; Guo, Y.-L.; Zhou, Y.-G. Tetrahedron Lett.
010, 51, 525–528; (k) Tang, W.-J.; Sun, Y.; Xu, L.-J.; Wang, T.; Fan, Q.-H.; Lam,
K.-H.; Chan, A. S. C. Org. Biomol. Chem. 2010, 8, 3464–3471; (l) Wang, D.-W.;
Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74,
2780–2787; (m) Wang, X.-B.; Zhou, Y.-G. J. Org. Chem. 2008, 73, 5640–5642; (n)
Wang, Z.-J.; Deng, G.-J.; Li, Y.; He, Y.-M.; Tang, W.-J.; Fan, Q.-H. Org. Lett. 2007, 9,
1243–1246; (o) Deport, C.; Buchotte, M.; Abecassis, K.; Tadaoka, H.; Ayad, T.;
Ohshima, T.; Genêt, J.-P.; Mashima, K.; Ratovelomanana-Vidal, V. Synlett 2007,
Acknowledgments
2
743–2747; (p) Gou, F.-R.; Li, W.; Zhang, X.; Liang, Y.-M. Adv. Synth. Catal. 2010,
This work was supported by Oril Industries (A.M.M.). The
authors thank J.-P. Lecouvé, N. Pinault, L. Vaysse-Ludot for fruitful
discussions, and Justine Lucet for some experiments. The Conseil
Régional Nord - Pas de Calais and PRIM SP are thanked for founding
of the ELEMENTAR, vario MICRO equipment for the elemental anal-
yses. Mrs N. Duhal (CUMA, Pharm. Dept., Univ. Lille Nord de
France) is thanked for the mass analysis.
3
52, 2441–2444; (q) Wang, D.-W.; Wang, D.-S.; Chen, Q.-A.; Zhou, Y.-G. Chem.
Eur. J. 2010, 16, 1133–1136; (r) Eggenstein, M.; Thomas, A.; Theurkauf, J.;
Francio, G.; Leitner, W. Adv. Synth. Catal. 2009, 351, 725–732; (s) Jahjah, M.;
Alame, M.; Pellet-Rostaing, S.; Lemaire, M. Tetrahedron: Asymmetry 2007, 18,
2305–2312; (t) Zhang, D.-Y.; Wang, D.-S.; Wang, M.-C.; Yu, C.-B.; Gao, K.; Zhou,
Y.-G. Synthesis 2011, 17, 2796–2802; (u) Zhang, D. Y.; Yu, C.-B.; Wang, M.-C.;
Gao, K.; Zhou, Y.-G. Tetrahedron Lett. 2012, 53, 2556–2559.
Other Iridium based asymmetric hydrogenation of quinolines: (a) Lu, S.-M.;
Bolm, C. Adv. Synth. Catal. 2008, 350, 1101–1105; (b) Rubio, M.; Pizzano, A.
Molecules 2010, 15, 7732–7742; (c) Mrsic, N.; Lefort, L.; Boogers, J. A. F.;
Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Adv. Synth. Catal. 2008, 350, 1081–
6.
Supplementary data
1
089; (d) Rueping, M.; Koenigs, R. M. Chem. Commun. 2011, 47, 304–306; (e) Li,
Z.-W.; Wang, T.-L.; He, Y.-M.; Wang, Z.-J.; Fan, Q.-H.; Pan, J.; Xu, L.-J. Org. Lett.
008, 22, 5265–5268; (f) Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew.
2
Chem., Int. Ed. 2006, 45, 2260–2263; (g) Wang, D.-S.; Zhou, Y.-G. Tetrahedron
Lett. 2010, 51, 3014–3017; (h) Tadaoka, H.; Cartigny, D.; Nagano, T.; Gosavi, T.;
Ayad, T.; Genêt, J.-P.; Ohshima, T.; Ratovelomanana-Vidal, V.; Mashima, K.
Chem. Eur. J. 2009, 15, 9990–9994; (i) Dobereiner, G. E.; Nova, A.; Schley, N. D.;
Hazari, N.; Miller, S. J.; Eisenstein, O.; Crabtree, R. H. J. Am. Chem. Soc. 2011, 133,
7547–7561.
References and notes
1
.
(a) Rokotoson, J. H.; Fabre, N.; Jacquemond-Collet, I.; Hannedouche, S.;
Fouraste, I.; Moulis, C. Planta Med. 1998, 64, 762–763; (b)Comprehensive
Natural Products Chemistry; Barton, D. H. R., Nakanishi, K., Meth-Cohn, O., Eds.;
Elsevier: Oxford, 1999; Vols 1-9, (c) Jacquemond-Collet, I.; Hannedouche, S.;
Fabre, N.; Fourasté, I.; Moulis, C. Phytochemistry 1999, 51, 1167–1169; (d)
Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.; Yates, M. Planta Med. 1999,
7. Ruthenium based asymmetric hydrogenation of quinolines: (a) Zhou, H.; Li, Z.;
Wang, Z.; Wang, T.; Xu, L.-J.; He, Y.; Fan, Q.-H.; Pan, J.; Gu, L.; Chan, A. S. C.
Angew. Chem., Int. Ed. 2008, 47, 8464–8467; (b) Wang, T.; Ouyang, G.; He, Y.-M.;
Fan, Q.-H. Synlett 2011, 7, 939–942; (c) Wang, T.; Zhuo, L.-G.; Li, Z.; Chen, F.;
Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan, A. S. C. J. Am. Chem. Soc.
2011, 133, 9878–9891; (d) Wang, Z.-J.; Zhou, H.-F.; Wang, T.-L.; He, Y.-M.; Fan,
Q.-H. Green Chem. 2009, 11, 767–769; (e) Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-
S.; Shi, L.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2012, 134, 2442–2448.
8. Asymmetric transfer hydrogenation of quinolines: (a) Guo, Q.-S.; Du, D.-M.; Xu,
J. Angew. Chem., Int. Ed. 2008, 47, 759–762; (b) Wang, C.; Li, C.; Wu, X.; Pettman,
A.; Xiao, J. Angew. Chem., Int. Ed. 2009, 48, 6524–6528; (c) Parekh, V.; Ramsden,
J. A.; Wills, M. Tetrahedron: Asymmetry 2010, 21, 1549–1556; (d) Rueping, M.;
Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 1001–1006; (e)
Rueping, T.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45,
3683–3686.
6
5, 250–254; (e) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104,
341.
(a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 48, 15031–
5070; (b) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669–1730; c Key,
J. D. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 8, pp 579–601.
(a) Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. Tetrahedron:
Asymmetry 2005, 16, 827–831; (b) Jacquemond-Collet, I.; Benoit-Vical, F.;
Mustofa, A.; Valentin, A.; Stanislas, E.; Mallié, M.; Fourasté, I. Planta Med. 2002,
3
2
.
.
1
3
68, 68–69; (c) Yang, P.-Y.; Zhou, Y.-G. Tetrahedron: Asymmetry 2004, 15, 1145–
1
149.
9. Maj, A. M.; Suisse, I.; Méliet, C.; Agbossou-Niedercorn, F. Tetrahedron:
Asymmetry 2010, 21, 2010–2014.
4
.
For recent reviews, see: (a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G.
Chem. Rev. 2012, 112, 2557–2590; (b) Glorius, F. Org. Biomol. Chem. 2005, 3,
10. (a) Moores, A.; Poyatos, M.; Luo, Y.; Crabtree, R. H. New J. Chem. 2006, 30, 1675–
1678; (b) Dean, D.; Davis, B.; Jessop, P. G. New J. Chem. 2011, 35, 417–422.
4
171–4175; (c) Kuwano, R. Heterocycles 2008, 76, 909–922; (d) Zhou, Y.-G. Acc.
Chem. Res. 2007, 40, 1357; (e) Fleury-Brégeot, N.; De La Fuente, V.; Castillon, S.;
Claver, C. ChemCatChem 2010, 2, 1346–1371.