Ï Â
Z.B. Tomisic et al. / Journal of Molecular Structure 611 ;2002) 73±81
81
bonds N42±H42´´´O31 create centrosymmetric
References
dimers 5Table 5, Fig. 4a) with an eight-membered
ring of the graph-set descriptor R2258) [21±23]. The
hydrogen bonding is completed by cooperation of
crystalline water molecules; compound 2 crystallises
with 1.5 water molecules per quinoline molecule. One
water molecule 5O1W), of the two present in the
asymmetric unit, is in special position at the twofold
axis 54e special position in the C2/c space group).
Water molecules O2W interconnect dimers of
hydrogen bonded quinoline molecules by donating
one of their hydrogen atoms to carbonyl oxygen
O31 of the pyrazolo ring of one quinoline molecule
5O2W±H22W´´´O31) and the other hydrogen to
amino nitrogen N74 of piperazinyl ring of the other
quinoline molecule 5O2W±H21W´´´N74) 5Fig. 4a).
The waved chains of quinoline dimers parallel to
[101] of the cell are formed with graph-set descriptor
C22515). Water molecules OW1 form bridges between
these chains through O1W±H1W´´´O2W hydrogen
bonds. Thus, the water molecules OW2 are three-
coordinated, each molecule acting as a donor 5to
N74 and O31) in two hydrogen bonds and as an
acceptor in one hydrogen bond, a feature which is
commonly observed in the crystal structures of small
molecule hydrates [26]. p´´´p interactions have been
detected between quinoline moieties 5Fig. 4b);
centroids of the two neighbouring rings N1±C2±
[1] T. Rosen, in: G.P. Ellis, G.B. West 5Eds.), Progress in Medic-
inal Chemistry, vol. 27, Elsevier, Amsterdam, 1990, pp. 235±
290 chapter 6.
[2] P. Ball, A. Fernald, G. Tillotson, Exp. Opin. Invest. Drugs 7
51998) 761.
[3] J.M. Blondeau, Clin. Therapeut. 21 51999) 3.
[4] G.Y. Lesher, E.J. Froelich, M.D. Gruett, J.H. Bailey, R.P.
Brundage, J. Med. Chem. 5 51962) 1063.
[5] T.D. Gootz, K.E. Brighty, Med. Res. Rev. 16 51996) 433.
[6] J.M. Domagala, J. Antimicrob. Chemother. 33 51994) 685.
[7] G.S. Tillotson, J. Med. Microbiol. 44 51996) 320.
[8] E. Gocke, S. Albertini, A.A. Chetelat, S. Kirchner, W. Muster,
Toxicol. Letts. 103 51998) 375.
[9] A. De Sarro, G. De Sarro, Curr. Med. Chem. 8 52001) 371.
[10] K. Grohe, U. Petersen, H.J. Zeiler, K. Metzger, Ger. Offen. DE
3, 525 51986) 108.
[11] A.L. Spek, helena, Program for Data reduction, Utrecht
University, The Netherlands, 1997.
[12] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi,
A.G.G. Moliterni, M.C. Burla, G. Polidori, M. Camalli, R.
Spagna, SIR97: APackage for Crystal Structure Solution by
Direct Methods and Re®nement, University of Bari, Italy, 1997.
[13] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi,
A.G.G. Moliterni, M.C. Burla, G. Polidori, M. Camalli, R.
Spagna, SIR92: APackage for Crystal Structure Solution by
Direct Methods and Re®nement, University of Bari, Italy, 1992.
[14] G. M. Sheldrick, shelxl97. Program for crystal structure
re®nement, University of Goettingen, Germany, 1997.
[15] A.L. Spek, platon98. Version 1998, Utrecht University, The
Netherlands, 1998.
Ï Ï
[16] I. Turel, I. Leban, M. Zupancic, P. Bukovac, K. Gruber, Acta
Ê
C3±C4±C10±C9 are separated by 3.525 A. In the
Cryst. C 52 51996) 2443.
[17] M. Parvez, M.S. Arayne, N. Sultana, A.Z. Siddiqi, Acta Cryst.
C 56 52000) 910±912.
structure of 2 ¯uorine meets quite well geometrical
criteria for an acceptor of hydrogen in the intramo-
lecular interaction C76±H76A´´´F6 [graph-set nota-
tion S56)]. According to the analysis reported by
Shimoni and Glusker [27] for C±F as an acceptor
group attached to an aromatic system, the mean
[18] A.J. Florence, A.R. Kennedy, N. Shankland, E. Wright, A. Al-
Rubayi, Acta Cryst. C 56 52000) 1372.
[19] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G.
Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 51987) S1.
[20] D. Cremer, J.A. Pople, J. Am. Chem. Soc. 97 51975) 1354.
[21] M.C. Etter, J. MacDonald, Acta Cryst. B 46 51990) 256.
[22] J. Bernstein, M.C. Etter, J.C. MacDonald, J. Chem. Soc.
Perkin Trans. 2 51991) 695.
Ê
H´´´F distance is 2.58 A whereas the mean C±
H´´´F angle is 1298. These values were obtained for
a small statistical sample 5seven structures) but they
®t nicely in the ranges obtained by our analysis of
data extracted from Cambridge Structural Database,
version 5.21, April 2001 [25]. The restrictions to
organic compounds and the structures with an R
value ,0.05, while searching met 325 structures
[23] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew.
Chem. Int. Ed. Engl. 34 51995) 1555.
[24] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Struc-
tural Chemistry and Biology, Oxford University Press,
Oxford, 2000.
[25] F.H. Allen, O. Kennard, Chem. Des. Autom. News 8 51993) 31.
[26] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological
Structures, Springer, Berlin, 1991 chapter 2, pp. 15±48.
[27] L. Shimoni, J.P. Glusker, Struct. Chem. 5 51994) 383±397.
[28] M.D. Prasanna, T.N. Guru Row, J. Mol. Struct. 559 52001)
255±261.
Ê
with the C´´´F range from 2.480 to 3.169 A and
Ê
H´´´F from 2.072 to 2.669 A. Our data for compound
2 5Table 5) are in agreement with these ®ndings and
data reported for analogous compound, cipro¯oxacin
lactate [28].