10.1002/cctc.201901312
ChemCatChem
COMMUNICATION
The BET (Brunauer-Emmett-Teller) surface area (SBET), pore volume
(Vpore), and BJH pore size distribution were measured in a Micromeritics
ASAP 2020 instrument, following degassing of a 1000 mg sample at
105 °C for 1 h under vacuum. Inductively coupled plasma optical
emission spectrometry (ICP-OES) was performed with a Perkin Elmer
OPTIMA 8300 to evaluate the metal loading of the oxide samples.
[10] C. P. Jiménez-Gómez, J. A. Cecilia, D. Durán-Martín, R. Moreno-Tost,
J. Santamaría-González, J. Mérida-Robles, R. Mariscal, P. Maireles-
Torres, J. Catal. 2016, 336, 107–115.
[11] F. Dong, Y. Zhu, H. Zheng, Y. Zhu, X. Li, Y. Li, J. Mol. Catal. A 2015,
398, 140–148.
[12] M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G.
Vlachos, B. Xu, ACS Catal. 2015, 5, 3988–3994.
Utilizing N2O reactive frontal chromatography (N2O-RFC), we
computed the Cu surface area of the samples. A calcined sample (105
mg) was reduced with a BELCAT-B instrument (BEL Japan, Inc.) at
300 °C with a ramping rate of 5 °C min−1 for 1 h under 10% H2/Ar at 30
mL min−1. After cooling to 40 °C under H2, the introduction of 1% N2O/He
at 5 mL min−1 (m/z = 44) and the production of N2 (m/z = 28) were
recorded by a BEL-Mass (BEL Japan, Inc.). The calculation of Cu
surface area was based on two assumptions: the reaction stoichiometry
[13] Z. Fu, Z. Wang, W. Lin, W. Song, S. Li, Appl. Catal. A 2017, 547, 248–
255.
[14] S. Srivastava, G. C. Jadeja, J. Parikh, RSC Adv. 2016, 6, 1649–1658.
[15] H. Zhang, C. Canlas, A. Jeremy Kropf, J. W. Elam, J. A. Dumesic, C. L.
Marshall, J. Catal. 2015, 326, 172–181.
[16] B. Seemala, C. M. Cai, R. Kumar, C. E. Wyman, P. Christopher, ACS
Sustain. Chem. Eng. 2017, 6, 2152–2161.
of Cu/O is 2:1 and Cu surface density is 1.46 × 1019 Cu atoms m−2
The acidity of the samples was studied through ammonia
temperature-programmed desorption (NH3-TPD) experiments with
.
[17] Z. Zhang, Z. Pei, H. Chen, K. Chen, Z. Hou, X. Lu, P. Ouyang, J. Fu,
Ind. Eng. Chem. Res. 2018, 57, 4225–4230.
a
[18] C. P. Jiménez-Gómez, J. A. Cecilia, R. Moreno-Tost, P. Maireles-
Torres, ChemSusChem 2017, 10, 1448–1459.
BELCAT-B instrument. Prior to analysis, the calcined sample was
reduced following the same procedure described above for the N2O-RFC
analysis. On the other hand, the spent catalyst was stabilized at 200 °C
under He flow (30 mL min−1) for 2 h to assure complete removal of
residual species on the catalyst surface. After cooling to 50 °C, the
samples were exposed to 5% NH3/He at a flow of 30 mL min−1 for 1 h.
Then, after He purging, we monitored the desorption of ammonia with
heating from 50 to 800 °C at a ramping rate of 15 °C min−1. For
confirmation of water removal during the TPD, the NH3/He flow was
[19] J. Zhang, J. Chen, ACS Sustain. Chem. Eng. 2017, 5, 5982–5993.
[20] B. Seemala, C. M. Cai, C. E. Wyman, P. Christopher, ACS Catal. 2017,
7, 4070–4082.
[21] H. Sheng, R. F. Lobo, ChemCatChem 2016, 8, 3402–3408.
[22] H. Niu, J. Luo, C. Li, B. Wang, C. Liang, Ind. Eng. Chem. Res. 2019, 58,
6298–6308.
[23] S. J. Smith, B. Huang, S. Liu, Q. Liu, R. E. Olsen, J. Boerio-Goates, B.
F. Woodfield, Nanoscale 2015, 7, 144–156.
replaced with flowing He at 30 mL min−1
Temperature-programmed reduction (TPR) experiments were
conducted in Micromeritics AutoChem 2910 to observe the H2
consumption profiles of the samples. The calcined sample (65 mg) was
heated to 800 °C at a rate of 2 °C min−1 under 10% H2/Ar at 50 mL min−1
X-ray photoelectron spectroscopy (XPS) spectra were obtained with a K-
Alpha Plus spectrometer (Thermo Scientific Co.) with a monochromatic
Al Kα X-ray source (1486.6 eV). The recorded spectra were calibrated by
a standard C 1s peak at 284.6 eV.
.
[24] B. Huang, C. H. Bartholomew, B. F. Woodfield, Micropor. Mesopor.
Mater. 2014, 183, 37–47.
a
[25] J. Oh, H. B. Bathula, J. H. Park, Y.-W. Suh, Commun. Chem. 2019, 2,
68.
.
[26] C. P. Jiménez-Gómez, J. A. Cecilia, R. Moreno-Tost, P. Maireles-
Torres, ChemCatChem 2017, 9, 2881–2889.
[27] J. M. McHale, A. Navrotsky, A. J. Perrotta, J. Phys. Chem. B 1997, 101,
603–613
[28] S. J. Smith, S. Amin, B. F. Woodfield, J. Boerio-Goates, B. J. Campbell,
Inorg. Chem. 2013, 52, 4411–4423.
[29] R. S. Rao, R. T. K. Baker, M. A. Vannice, Catal. Lett. 1999, 60, 51–57.
[30] B. M. Nagaraja, A. H. Padmasri, B. David Raju, K. S. Rama Rao, J. Mol.
Catal. A: Chem. 2007, 265, 90–97.
Acknowledgements
[31] B. K. Kwak, D. S. Park, Y. S. Yun, J. Yi, Catal. Commun. 2012, 24, 90–
95.
This work was financially supported by the Korea Institute of
Energy Technology Evaluation and Planning under the Ministry
of Trade, Industry, and Energy, Republic of Korea (KETEP-
20163010092210), as well as by the Next Generation Carbon
Upcylcing Program through the National Research Foundation
of Korea under the Ministry of Science and ICT, Republic of
Korea (NRF-2017M1A2A2043148).
[32] C. Jeong, H. Ham, J. W. Bae, D.-C. Kang, C.-H. Shin, J. H. Baik, Y.-W.
Suh, ChemCatChem 2017, 9, 4484-4489.
[33] C. Jeong, J. Park, J. Kim, J. H. Baik, Y.-W. Suh, Korean J. Chem. Eng.
2019, 36, 191-196.
[34] K. Watanabe, N. Yamagiwa, Y. Torisawa, Org. Process Res. Dev. 2007,
11, 251–255.
[35] M. J. Campos-Molina, R. Mariscal, M. Ojeda, M. López Granados,
Bioresour. Technol. 2012, 126, 321–327.
Keywords: heterogeneous catalysis • bifunctional catalyst •
furfural • green chemistry • mesoporous Cu-Al2O3
[1]
[2]
[3]
[4]
[5]
[6]
[7]
R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. L. Granados,
Energy Environ. Sci. 2016, 9, 1144–1189.
L. Burnett, I. Johns, R. Holdren, R. Hixon, Ind. Eng. Chem. 1948, 40,
502–505.
M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 2016, 18, 487–
496.
V. V. Pushkarev, N. Musselwhite, K. An, S. Alayoglu, G. A. Somorjai,
Nano Lett. 2012, 12, 5196–5201.
H. J. Cho, D. Kim, J. Li, D. Su, B. Xu, J. Am. Chem. Soc. 2018, 140,
13514–13520.
C. Wang, H. Xu, R. Daniel, A. Ghafourian, J. M. Herreros, S. Shuai, X.
Ma, Fuel 2013, 103, 200–211.
M. N. Gebresillase, R. Shavi, J. G. Seo, Green Chem. 2018, 20, 5133–
5146.
[8]
[9]
S. Sitthisa, D. E. Resasco, Catal. Lett. 2011, 141, 784–791.
G. S. Hutchings, W. Luc, Q. Lu, Y. Zhou, D. G. Vlachos, F. Jiao, Ind.
Eng. Chem. Res. 2017, 56, 3866–3872.
This article is protected by copyright. All rights reserved.