Structure-Activity Relationship for EFdA Analogs
2
5. Nakata H, Amano M, Koh Y, Kodama E, Yang G, Bailey CM, Kohgo S,
Hayakawa H, Matsuoka M, Anderson KS, Cheng YC, Mitsuya H. 2007.
Activity against human immunodeficiency virus type 1, intracellular me-
tabolism, and effects on human DNA polymerases of 4=-ethynyl-2-fluoro-
C, Nicklaus MC, Dai F, Ford H, Jr. 1999. Synthesis of conformation-
ally restricted carbocyclic nucleosides: the role of the O(4=)-atom in
the key hydration step of adenosine deaminase. Helv. Chim. Acta 82:
2119–2129.
2
=-deoxyadenosine. Antimicrob. Agents Chemother. 51:2701–2708.
45. Ford H, Jr, Dai F, Mu L, Siddiqui MA, Nicklaus MC, Anderson L,
Marquez VE, Barchi JJ, Jr. 2000. Adenosine deaminase prefers a distinct
sugar ring conformation for binding and catalysis: kinetic and structural
studies. Biochemistry 39:2581–2592.
2
6. Sohl CD, Singh K, Kasiviswanathan R, Copeland WC, Mitsuya H,
Sarafianos SG, Anderson KS. 2012. Mechanism of interaction of human
mitochondrial DNA polymerase gamma with the novel nucleoside reverse
transcriptase inhibitor 4=-ethynyl-2-fluoro-2=-deoxyadenosine indicates 46. Marquez VE, Schroeder GK, Ludek OR, Siddiqui MA, Ezzitouni A,
a low potential for host toxicity. Antimicrob. Agents Chemother. 56:
630–1634.
7. Adams A, Harkness RA. 1976. Adenosine deaminase activity in thymus
and other human tissues. Clin. Exp. Immunol. 26:647–649.
8. Johnson MA, Ahluwalia G, Connelly MC, Cooney DA, Broder S, Johns
DG, Fridland A. 1988. Metabolic pathways for the activation of the anti-
retroviral agent 2=,3=-dideoxyadenosine in human lymphoid cells. J. Biol.
Chem. 263:15354–15357.
9. Chilson OP, Fisher JR. 1963. Some comparative studies of calf and
chicken adenosine deaminase. Arch. Biochem. Biophys. 102:77–85.
0. Baer HP, Drummond GI, Gillis J. 1968. Studies on the specificity and
Wolfenden R. 2009. Contrasting behavior of conformationally locked
carbocyclic nucleosides of adenosine and cytidine as substrates for deami-
nases. Nucleosides Nucleotides Nucleic Acids 28:614–632.
47. Shuto S, Obara T, Itoh H, Kosugi Y, Saito Y, Toriya M, Yaginuma S,
Shigeta S, Matsuda A. 1994. New neplanocin analogues. IV. 2-Fluorone-
planocin A: an adenosine deaminase-resistant equivalent of neplanocin A.
Chem. Pharm. Bull. (Tokyo) 42:1688–1690.
48. Obara T, Shuto S, Saito Y, Snoeck R, Andrei G, Balzarini J, De Clercq
E, Matsuda A. 1996. New neplanocin analogues. 7. Synthesis and antiviral
activity of 2-halo derivatives of neplanocin A. J. Med. Chem. 39:3847–
3852.
1
2
2
2
3
mechanism of action of adenosine deaminase. Arch. Biochem. Biophys. 49. Boyer PL, Julias JG, Ambrose Z, Siddiqui MA, Marquez VE, Hughes
1
23:172–178.
SH. 2007. The nucleoside analogs 4=C-methyl thymidine and 4=C-ethyl
thymidine block DNA synthesis by wild-type HIV-1 RT and excision pro-
ficient NRTI resistant RT variants. J. Mol. Biol. 371:873–882.
3
3
1. Simon LN, Bauer RJ, Tolman RL, Robins RK. 1970. Calf intestine
adenosine deaminase. Substrate specificity. Biochemistry 9:573–577.
2. Maguire MH, Sim MK. 1971. Studies on adenosine deaminase. 2. Spec- 50. Vu BC, Boyer PL, Siddiqui MA, Marquez VE, Hughes SH. 2011.
ificity and mechanism of action of bovine placental adenosine deaminase.
Eur. J. Biochem. 23:22–29.
4=-C-methyl-2=-deoxyadenosine and 4=-C-ethyl-2=-deoxyadenosine in-
hibit HIV-1 replication. Antimicrob. Agents Chemother. 55:2379–2389.
3
3
3. Agarwal RP, Sagar SM, Parks RE, Jr. 1975. Adenosine deaminase from 51. de Leeuw FAAM, Altona C. 1983. Computer assisted pseudorotational
3
human erythrocytes: purification and effects of adenosine analogs.
analysis of 5-membered rings by means of J. coupling constants: pro-
HH
Biochem. Pharmacol. 24:693–701.
gram PSEUROT. J. Comp. Chem. 4:428–437.
4. Cooney DA, Ahluwalia G, Mitsuya H, Fridland A, Johnson M, Hao Z, 52. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA,
Dalal M, Balzarini J, Broder S, Johns DG. 1987. Initial studies on the
cellular pharmacology of 2=,3=-dideoxyadenosine, an inhibitor of HTLV-
III infectivity. Biochem. Pharmacol. 36:1765–1768.
5. Yarchoan R, Mitsuya H, Thomas RV, Pluda JM, Hartman NR, Perno
CF, Marczyk KS, Allain JP, Johns DG, Broder S. 1989. In vivo activity
Morales CM, Weinhold F. 2001. NBO 5.0 program. Theoretical Chem-
istry Institute, University of Wisconsin, Madison, WI.
53. Weinhold F, Landis CR. 2001. Introduction to Natural Bond Orbitals,
NBO 5.0 program, and recent extensions of localized bonding concepts.
Chem. Educ. Res. Pract. 2:91–104.
3
against HIV and favorable toxicity profile of 2=,3=-dideoxyinosine. Science 54. Paul MK, Grover V, Mukhopadhyay AK. 2005. Merits of HPLC-based
2
45:412–415.
method over spectrophotometric method for assessing the kinetics and
inhibition of mammalian adenosine deaminase. J. Chromatogr. B Analyt.
Technol. Biomed. Life Sci. 822:146–153.
3
6. Kirby KA, Singh K, Michailidis E, Marchand B, Kodama EN, Ashida
N, Mitsuya H, Parniak MA, Sarafianos SG. 2011. The sugar ring
conformation of 4=-ethynyl-2-fluoro-2=-deoxyadenosine and its rec- 55. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular
ognition by the polymerase active site of HIV reverse transcriptase.
Cell Mol. Biol. 57:40–46.
7. Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford H, Jr, Feldman
RJ, Mitsuya H, George C, Barchi JJ, Jr. 1998. Lessons from the pseu-
graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126–2132.
56. Altona C, Sundaralingam M. 1972. Conformational analysis of the sugar
ring in nucleosides and nucleotides: a new description using the concept of
pseudorotation. J. Am. Chem. Soc. 94:8205–8212.
3
dorotational cycle: conformationally rigid AZT carbocyclic nucleosides 57. Siddiqui MA, Hughes SH, Boyer PL, Mitsuya H, Van QN, George C,
and their interaction with reverse transcriptase. Nucleosides Nucleotides
7:1881–1884.
8. Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford H, Jr, Feldman
Sarafinanos SG, Marquez VE. 2004. A 4=-C-ethynyl-2=,3=-
dideoxynucleoside analogue highlights the role of the 3=-OH in anti-HIV
active 4=-C-ethynyl-2=-deoxy nucleosides. J. Med. Chem. 47:5041–5048.
1
3
RJ, Mitsuya H, George C, Barchi JJ, Jr. 1998. HIV-1 reverse transcriptase 58. Young DW, Tollin P, Wilson HR. 1969. The crystal and molecular
can discriminate between two conformationally locked carbocyclic AZT
triphosphate analogues. J. Am. Chem. Soc. 120:2780–2789.
9. Mu L, Sarafianos SG, Nicklaus MC, Russ P, Siddiqui MA, Ford H, Jr,
structure of thymidine. Acta Crystallogr. B 25:1423–1432.
59. Weinhold F, Landis CR. 2012. Discovering chemistry with natural bond
orbitals. John Wiley and Sons, Inc., Hoboken, NJ.
3
Mitsuya H, Le R, Kodama E, Meier C, Knispel T, Anderson L, Barchi 60. Kelly MA, Vestling MM, Murphy CM, Hua S, Sumpter T, Fenselau C.
JJ, Jr, Marquez VE. 2000. Interactions of conformationally biased
north and south 2=-fluoro-2=, 3=-dideoxynucleoside 5=-triphosphates
1996. Primary structure of bovine adenosine deaminase. J. Pharm.
Biomed. Anal. 14:1513–1519.
with the active site of HIV-1 reverse transcriptase. Biochemistry 39: 61. Wiginton DA, Adrian GS, Hutton JJ. 1984. Sequence of human adeno-
1
1205–11215.
sine deaminase cDNA including the coding region and a small intron.
4
4
4
4
0. Boyer PL, Julias JG, Marquez VE, Hughes SH. 2005. Fixed conformation
nucleoside analogs effectively inhibit excision-proficient HIV-1 reverse 62. Durham JP, Ives DH. 1970. Deoxycytidine kinase. II. Purification and
transcriptases. J. Mol. Biol. 345:441–450.
1. Van Roey P, Taylor EW, Chu CK, Schinazi RF. 1990. Correlation of
molecular conformation and activity of reverse transcriptase inhibitors. 63. Krenitsky TA, Tuttle JV, Koszalka GW, Chen IS, Beacham LM, III,
Ann. N. Y. Acad. Sci. 616:29–40.
2. Wang J, Choudhury D, Chattopadhyaya J, Eriksson S. 1999. Stereoiso-
meric selectivity of human deoxyribonucleoside kinases. Biochemistry 38: 64. Weissman SM, Smellie RM, Paul J. 1960. Studies on the biosynthesis of
Nucleic Acids Res. 12:2439–2446.
general properties of the calf thymus enzyme. J. Biol. Chem. 245:2276–
2284.
Rideout JL, Elion GB. 1976. Deoxycytidine kinase from calf thymus.
Substrate and inhibitor specificity. J. Biol. Chem. 251:4055–4061.
1
6993–16999.
deoxyribonucleic acid by extracts of mammalian cells. IV. The phosphor-
ylation of thymidine. Biochim. Biophys. Acta 45:101–110.
3. Marquez VE, Russ P, Alonso R, Siddiqui MA, Shin KJ, George C,
Nicklaus MC, Dai F, Ford H, Jr. 1999. Conformationally restricted 65. Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentre F, Taburet AM. 2010.
nucleosides. The reaction of adenosine deaminase with substrates built
on a bicyclo[3.1.0]hexane template. Nucleosides Nucleotides 18:521–
Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected
patients, and their correlation with drug action. Clin. Pharmacokinet.
49:17–45.
5
30.
4
4. Marquez VE, Russ P, Alonso R, Siddiqui MA, Hernandez S, George 66. Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman
December 2013 Volume 57 Number 12
aac.asm.org 6263