Bioconjugate Chemistry
Article
(14) Yang, J., Lee, H., Hyung, W., Park, S.-B., and Haam, S. (2006)
Magnetic PECA nanoparticles as drug carriers for targeted delivery:
Synthesis and release characteristics. J. Microencap. 23, 203−12.
(15) Yang, J., Park, S.-B., Yoon, H.-G., Huh, Y.-M., and Haam, S.
(2006) Preparation of poly caprolactone nanoparticles containing
magnetite for magnetic drug carrier. Int. J. Pharm. 324, 185−90.
(16) Kiew, L. V., Cheong, S. K., Sidik, K., and Chung, L. Y. (2010)
Improved plasma stability and sustained release profile of gemcitabine
via polypeptide conjugation. Int. J. Pharm. 391, 212−20.
ACKNOWLEDGMENTS
■
Kosten foundation is duly acknowledged for providing financial
support.
ABBREVIATIONS
■
CMC, critical micelle concentration; dFdU, 2′,2′-difluorodeox-
yuridine; EDC, 1-(3-dimethylaminopropyl)-3-ethylcarbodii-
mide HCl; HOBT, 1-hydroxybenzotriazole; MBC, 2-methyl-2-
benzyloxycarbonyl-propylene carbonate; mPEG, methoxy poly-
ethylene glycol; PBS, phosphate buffered saline; PDI, poly-
dispersity index; PEG-PCC, poly(ethylene glycol)-block-poly(2-
methyl-2-carboxyl-propylene carbonate); TEM, transmission
electron microscopy; TUNEL, terminal deoxynucleotidyl trans-
ferase biotin-dUTP nick end labeling
(17) Cavallaro, G., Licciardi, M., Salmaso, S., Caliceti, P., and Gaetano,
G. (2006) Folate-mediated targeting of polymeric conjugates of
gemcitabine. Int. J. Pharm. 307, 258−69.
(18) Moog, R., Burger, A. M., Brandl, M., Schuler, J., Schubert, R., and
Unger, C. (2002) Change in pharmacokinetic and pharmacodynamic
behavior of gemcitabine in human tumor xenografts upon entrapment in
vesicular phospholipid gels. Cancer Chemother. Pharmacol. 49, 356−66.
(19) Ali, S. M., Khan, A. R., Ahmad, M. U., Chen, P., Sheikh, S., and
Ahmad, I. (2005) Synthesis and biological evaluation of gemcitabine-
lipid conjugate (NEO6002). Bioorg. Med. Chem. Lett. 15, 2571−4.
(20) Couvreur, P., Stella, B., Reddy, L. H., Hillaireau, H., Dubernet, C.,
Desmaele, D., Lepetre-Mouelhi, S., Rocco, F., Marsaud, V., Renoir, J. M.,
and Cattel, L. (2006) Squalenoyl nanomedicines as potential
therapeutics. Nano Lett. 6, 2544−8.
(21) Reddy, L. H., Dubernet, C., Mouelhi, S. L., Marque, P. E.,
Desmaele, D., and Couvreur, P. (2007) A new nanomedicine of
gemcitabine displays enhanced anticancer activity in sensitive and
resistant leukemia types. J. Controlled Release 124, 20−7.
(22) Reddy, L. H., Khoury, H., Paci, A., Deroussent, A., Ferreira, H.,
Dubernet, C., Decleves, X., Besnard, M., Chacun, H., Lepetre-Mouelhi,
S., Desmaele, D., Rousseau, B., Laugier, C., Cintrat, J. C., Vassal, G., and
Couvreur, P. (2008) Squalenoylation favorably modifies the in vivo
pharmacokinetics and biodistribution of gemcitabine in mice. Drug
Metab. Dispos. 36, 1570−7.
(23) Reddy, L. H., Renoir, J. M., Marsaud, V., Lepetre-Mouelhi, S.,
Desmaele, D., and Couvreur, P. (2009) Anticancer efficacy of squalenoyl
gemcitabine nanomedicine on 60 human tumor cell panel and on
experimental tumor. Mol. Pharmaceutics 6, 1526−35.
(24) Rejiba, S., Reddy, L. H., Bigand, C., Parmentier, C., Couvreur, P.,
and Hajri, A. (2011) Squalenoyl gemcitabine nanomedicine overcomes
the low efficacy of gemcitabine therapy in pancreatic cancer.
Nanomedicine 7, 841−9.
(25) Tao, X. M., Wang, J. C., Wang, J. B., Feng, Q., Gao, S. Y., Zhang, L.
R., and Zhang, Q. (2012) Enhanced anticancer activity of gemcitabine
coupling with conjugated linoleic acid against human breast cancer in
vitro and in vivo. Eur. J. Pharm. Biopharm. 82, 401−9.
(26) Brusa, P., Immordino, M. L., Rocco, F., and Cattel, L. (2007)
Antitumor activity and pharmacokinetics of liposomes containing
lipophilic gemcitabine prodrugs. Anticancer Res. 27, 195−9.
(27) Pili, B., Reddy, L. H., Bourgaux, C., Lepetre-Mouelhi, S.,
Desmaele, D., and Couvreur, P. (2010) Liposomal squalenoyl-
gemcitabine: formulation, characterization and anticancer activity
evaluation. Nanoscale 2, 1521−6.
REFERENCES
■
(1) Giovannetti, E., Funel, N., Peters, G. J., Del Chiaro, M., Erozenci, L.
A., Vasile, E., Leon, L., Pollina, L., Groen, A., Falcone, A., Danesi, R.,
Campani, D., Verheul, H. M., and Boggi, U. (2010) MicroRNA-21 in
pancreatic cancer: correlation with clinical outcome and pharmacologic
aspects underlying its role in the modulation of gemcitabine activity.
Cancer Res. 70, 4528−38.
(2) Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., Xiang, D.,
Desano, J. T., Bommer, G. T., Fan, D., Fearon, E. R., Lawrence, T. S., and
Xu, L. (2009) MicroRNA miR-34 inhibits human pancreatic cancer
tumor-initiating cells. PLoS One 4, e6816.
(3) Singh, A., and Settleman, J. (2010) EMT, cancer stem cells and
drug resistance: an emerging axis of evil in the war on cancer. Oncogene
29, 4741−51.
(4) Wang, Z., Li, Y., Ahmad, A., Banerjee, S., Azmi, A. S., Kong, D., and
Sarkar, F. H. (2011) Pancreatic cancer: understanding and overcoming
chemoresistance. Nat. Rev. Gastroenterol. Hepatol. 8, 27−33.
(5) Pasut, G., Canal, F., Via, L. D., Arpicco, S., Veronese, F. M., and
Schiavon, O. (2008) Antitumoral activity of PEG−gemcitabine
prodrugs targeted by folic acid. J. Controlled Release 127, 239−48.
(6) Vandana, M., and Sahoo, S. K. (2010) Long circulation and
cytotoxicity of PEGylated gemcitabine and its potential for the
treatment of pancreatic cancer. Biomaterials 31, 9340−56.
(7) Reddy, L. H., and Couvreur, C. (2008) Novel approaches to deliver
gemcitabine to cancer. Curr. Pharm. Des. 14, 1124−37.
(8) Bormann, C., Graeser, R., Esser, N., Ziroli, V., Jantscheff, P., and
Keck, T. (2008) A new liposomal formulation of gemcitabine is active in
an orthotopic mouse model of pancreatic cancer assessible to
bioluminescence imaging. Cancer Chemother. Pharmacol. 61, 395−405.
(9) Calvagno, M. G., Celia, C., Paolino, D., Cosco, D., Iannone, M.,
Castelli, F., Doldo, P., and Fresta, M. (2007) Effects of lipid composition
and preparation conditions on physical-chemical properties, techno-
logical parameters and in vitro biological activity of gemcitabine-loaded
liposomes. Curr. Drug Delivery 4, 89−101.
(28) Stella, B., Arpicco, S., Rocco, F., Marsaud, V., Renoir, J.-M., Cattel,
L., and Couvreur, P. (2007) Encapsulation of gemcitabine lipophilic
derivatives into polycyanoacrylate nanospheres and nanocapsules. Int. J.
Pharm. 344, 71−7.
(29) Bekkara-Aounallah, F., Gref, R., Othman, M., Reddy, L. H., Pili, B.,
̂
Allain, V., Bourgaux, C., Hillaireau, H., Lepetre-Mouelhi, S., Desmaele,
̈
D., Nicolas, J., Chafi, N., and Couvreur, P. (2008) Novel PEGylated
nanoassemblies made of self-assembled squalenoyl nucleoside ana-
logues. Adv. Funct. Mater. 18, 1−11.
(30) Aryal, S., Hu, C. M., and Zhang, L. (2010) Combinatorial drug
conjugation enables nanoparticle dual-drug delivery. Small 6, 1442−8.
(31) Kiew, L. V., Cheong, S. K., Ramli, E., Sidik, K., Lim, T. M., and
Chung, L. Y. (2012) Efficacy of a poly-L-glutamic acid-gemcitabine
conjugate in tumor-bearing mice. Drug Dev. Res. 73, 120−129.
(32) Yang, J., Luo, K., Pan, H., Kopeckova, P., and Kopecek, J. (2011)
Synthesis of biodegradable multiblock copolymers by click coupling of
(10) Celano, M., Cavalgno, M. G., Bulotta, S., Paolino, D., and Arturi,
F. (2004) Cytotoxic effects of gemcitabine-loaded liposomes in human
anaplastic thyroid carcinoma cells. BMC Cancer 4, 63−70.
(11) Celia, C., Malara, N., Terracciano, R., Cosco, D., Paolino, D.,
Fresta, M., and Savino, R. (2008) Liposomal delivery improves the
growth-inhibitory and apoptotic activity of low doses of gemcitabine in
multiple myeloma cancer cells. Nanomedicine 4, 155−66.
(12) Gang, J., Park, S.-B., Hyung, W., Choi, E. H., Wen, J., Kim, H.,
Shul, Y., Haam, S., and Song, S. Y. (2007) Magnetic poly caprolactone
nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor
effect in pancreatic cancer xenograft mouse model. J. Drug Targeting 15,
445−53.
(13) Li, J.-m., Chen, W., Wang, H., Jin, C., Yu, X.-j., Lu, W.-y., Cui, L.,
Fu, D.-l., Ni, Q.-x., and Hou, H.-m. (2009) Preparation of albumin
nanospheres loaded with gemcitabine and their cytotoxicity against
BXPC-3 cells in vitro. Acta Pharmacol. Sin. 30, 1337−43.
L
dx.doi.org/10.1021/bc400032x | Bioconjugate Chem. XXXX, XXX, XXX−XXX