Angewandte Chemie International Edition
10.1002/anie.201711463
COMMUNICATION
In conclusion, we have developed the first example of
copper-catalyzed stereospecific trifluoromethylation and
difluoroalkylation of secondary propargyl sulfonates. The
reaction proceeded under mild reaction conditions with high
regioselectivity and stereospecificity (es up to >0.99), broad
substrate scope as well as excellent functional group
Shibata, Angew. Chem. Int. Ed. 2014, 53, 517; Angew. Chem. 2014,
126, 527.
[
[
8]
9]
a) T. Umemoto, K. Adachi, J. Org. Chem. 1994, 59, 5692; b) J.-A. Ma,
D. Cahard, J. Fluorine Chem. 2007, 128, 975; c) A. E. Allen, D. W. C.
MacMillan, J. Am. Chem. Soc. 2010, 132, 4986; d) Q.-H. Deng, H.
Wadepohl, L. H. Gade, J. Am. Chem. Soc. 2012, 134, 10769.
D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009,
compatibility.
All
of
the
resulting
enantioenriched
131, 10875.
trifluoromethylated and difluoroalkylated alkynes are unknown
and can serve as versatile building blocks for diversity-oriented
[10] a) C.-X. Zhuo, C. Zeng, S.-L. You, Acc. Chem. Res. 2014, 47, 2558; b)
B. Mao, M. Fananas-Mastra, B. L. Feringa, Chem. Rev. 2017, 117,
10502.
organic synthesis, thus providing
a useful protocol for
[11]
[12]
[13]
a) Z. Feng, F. Chen, X. Zhang, Org. Lett. 2012, 14, 1938; b) Z. Feng,
Q.-Q. Min, Y.-L. Xiao, B. Zhang, X. Zhang, Angew. Chem. Int. Ed.
applications in medicinal chemistry and materials science. An
inversed configuration was observed for current copper-
catalyzed stereospecific propargylic trifluoromethylation and
2
014, 53, 1669; Angew. Chem. 2014, 126, 1695; c) Y.-L. Xiao, W.-H.
Guo, G.-Z. He, Q. Pan, X. Zhang, Angew. Chem. Int. Ed. 2014, 53,
909; Angew. Chem. 2014, 126, 10067.
N
difluoroalkylation, demonstrating that a S 2 type oxidative
9
addition of copper to secondary propargyl sulfonates may be
involved in the reaction.[23, 24] We believe that the current
copper-catalyzed process will prompt the research for
transition-metal-catalyzed asymmetric fluoroalkylations.
a) T. S. N. Zhao, K. J. Szabo, Org. Lett. 2012, 14, 3966; b) Y. Miyake,
S.-i. Ota, M. Shibata, K. Nakajima, Y. Nishibayashi, Chem. Commun.
2013, 49, 7809; c) Y.-L. Ji, J.-J. Kong, J.-H. Lin, J.-C. Xiao, Y.-C. Gu,
Org. Biomol. Chem. 2014, 12, 2903; d) B. R. Ambler, S. Peddi, R. A.
Altman, Org. Lett. 2015, 17, 2506.
Y.-B. Yu, G.-Z. He, X. Zhang, Angew. Chem. Int. Ed. 2014, 53,
10457; Angew. Chem. 2014, 126, 10625.
Acknowledgements ((optional))
[14]
Only one example of photoredox catalyzed trifluoromethylation of
enantioenriched allylsilanes was reported, but moderate er values
were obtained, see: a) S. Mizuta, K. M. Engle, S. Verhoog, O.
Galicia-Lopez, M. O’Duill, M. Medebielle, K. Wheelhouse, G.
Rassias, A. L. Thompson, V. Gouverneur, Org. Lett. 2013, 15, 1250.
For regio- and stereospecific copper-catalyzed substitution of
propargylic ammonium salts, see: b) Guisan-Ceinos, M.; Martin-
Heras, V.; Tortosa, M. J. Am. Chem. Soc. 2017, 139, 8448.
This work was financially supported by the National Natural
Science Foundation of China (No. 21425208, 21672238,
2
170225, 21332010, and 21421002), the National Basic
Research Program of China (973 Program) (No.
015CB931900), the Strategic Priority Research Program of
2
the Chinese Academy of Sciences (No. XDB20000000) and
SIOC.
[15]
a) G. K. S. Prakash, R. Krishnamurti, G. A. Olah, J. Am. Chem. Soc.
1989, 111, 393; b) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015,
115, 683.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
[16]
a) M. Turlington, L. Pu, Synlett 2012, 23, 649; b) X, Zhang, Z. Lu, C.
Fu, S. Ma, Org. Biomol. Chem. 2009, 7, 3258.
[
17]
The secondary propargyl halides (halide = Br, Cl) were also examined,
but led to low yields (Br, 47%; Cl, 7%) of 3a along with allenic product,
for details, see the Scheme S1 in the Supporting Information.
R. Smits, B. Koksch, Curr. Top. Med. Chem. 2006, 6, 1483.
Keywords: catalytic asymmetric fluoroalkylation • copper •
[18]
19]
difluoroalkylation
•
secondary propargyl sulfonates
•
[
a) G. M. Dubowchik, V. M. Vrudhula, B. Dasgupta, J. Ditta, T. Chen,
S. Sheriff, K. Sipman, M. Witmer, J. Tredup, D. M. Vyas, T. A.
Verdoorn, S. Bollini, A. Vinitsky, Org. Lett. 2001, 3, 3987; b) S. E.
Ward, M. Harries, L. Aldegheri, N. E. Austin, S. Ballantine, E. Ballini, D.
M. Bradley, B. D. Bax, B. P. Clarke, A. J. Harris, S. A. Harrison, R. A.
Melarange, C. Mookherjee, J. Mosley, G. Dal Negro, B. Oliosi, K. J.
Smith, K. M. Thewlis, P. M. Woollard, S. P. Yusaf, J. Med. Chem.
trifluoromethylation
[
1]
a) For selected reviews, see: a) K. Mꢀller, C. Faeh, F. Diederich,
Science 2007, 317, 1881; b) D. O’Hagan, Chem. Soc. Rev. 2008, 37,
308; c) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529; d) J. Wang, M.
Sanchez-Rosello, J. L. Acen, C. del Pozo, A. E. Sorochinsky, S.
Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432.
For selected reviews, see: a) T. Furuya, A. S. Kamlet, T. Ritter, Nature
2
010, 53, 78.
[
20]
21]
A. M. Jawalekar, E. Reubsaet, F. P. J. T. Rutjes, F. L. van Delft,
Chem. Commun. 2011, 47, 3198.
[
[
2]
3]
2
011, 473, 470; b) O. A. Tomashenko, V. V. Grushin, Chem. Rev.
011, 111, 4475.
[
CCDC 1583999, 1584000 and 1584001 contain the supplementary
crystallographic data for 3b, 3e and 5b, respectively. These data
Metal-Catalyzed Cross-Coupling Reactions, 2nd ed, A. de Meijere, F.
Diederich, Eds.; Wiley-VCH: Weinheim, Germany, 2004; Volume 1,
p 478.
2
For reviews, see: a) N. Shibata, S. Mizuta, H. Kawai, Tetrahedron:
Asymmetry 2008, 19, 2633; b) Y. Zheng, J.-A. Ma, Adv. Synth. Catal.
2010, 352, 2745; c) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem.
[
22]
23]
Rev. 2015, 115, 826.
[
[
4]
5]
J.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR1-PR43.
a) K. Iseki, T. Nagai, Y. Kobayashi, Tetrahedron Lett. 1994, 35, 3137; b)
Y. Kuroki, K. Iseki, Tetrahedron Lett. 1999, 40, 8231; c) H. Nagao, Y.
Yamane, T. Mukaiyama, Chem. Lett. 2007, 36, 666; d) S. Mizuta, N.
Shibata, S. Akiti, H. Fujimoto, S. Nakamura, T. Toru, Org. Lett. 2007, 9,
[
a) K. S. Y. Lau, R. W. Fries, J. K. Stille, J. Am. Chem. Soc. 1974, 96,
983; b) J. K. Stille, K. S. Y. Lau, J. Am. Chem. Soc. 1976, 98, 5841;
4
c) A. B. Charette, A. Giroux, J. Org. Chem. 1996, 61, 8718; d) M. R.
Netherton, G. C. Fu, Angew. Chem., Int. Ed. 2002, 41, 3910; Angew.
Chem. 2002, 114, 4066; e) A. He, J. R. Falck, J. Am. Chem. Soc.
3707; e) X.-L. Hu, J. Wang, W. Li, L.-L. Lin, X.-H. Liu, X.-M. Feng,
Tetrahedron Lett. 2009, 50, 4378.
2010, 132, 2524.
[
[
6]
7]
a) H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata, Angew.
Chem. Int. Ed. 2009, 48, 6324; Angew. Chem. 2009, 121, 6442; b) S.
Okusu, H. Kawai, X.-H. Xu, E. Tokunaga, N. Shibata, J. Fluorine
Chem. 2012, 143, 216.
[
24]
For asymmetric propargylation, see: a) S. W. Smith, G. C. Fu, J. Am.
Chem. Soc. 2008, 130, 12645; b) D. R. Fandrick, K. R. Fandrick, J.
T. Reeves, Z. T.; W. Tang, A. G. Capacci, S. Rodriguez, J. J. Song,
H. Lee, N. K. Yee, C. H. Senanayake, J. Am. Chem. Soc. 2010, 132,
a) T. Furukawa, T. Nishimine, E. Tokunaga, K. Hasegawa, M. Shiro, N.
Shibata, Org Lett. 2011, 13, 3972; b) Y. Li, F. Liang, Q. Li, Y.-c. Xu,
Q.-R. Wang, L. Jiang, Org. Lett. 2011, 13, 6082; c) T. Nishimine, K.
Fukushi, N. Shibata, H. Taira, E. Tokunaga, A. Yamano, M. Shiro, N.
7600; c) K. R. Fandrick, D. R. Fandrick, J. T. Reeves, J. Gao, S. Ma,
W. Li, H. Lee, N. Grinberg, B. Lu, C. H. Senanayake, J. Am. Chem.
Soc. 2011, 133, 10332.
This article is protected by copyright. All rights reserved.