Z. Zhang et al.
Keywords: alcohols · biomass · heterogeneous catalysis ·
solvolysis · sustainable chemistry
[
1] a) H. J. Bart, J. Reidetschlager, K. Schatka, A. Lehmann, Ind. Eng. Chem.
Res. 1994, 33, 21–25; b) P. M. Ayoub, WO2005070867 A1; c) C. Capelli,
EP2065025 A2;
WO2010000761 A1.
d) L.
Clark,
A.
Felix-Moore,
J. J. J.
Louis,
Scheme 3. Synthesis of the catalyst.
[
[
2] a) O. V. Turova, E. V. Starodubtseva, M. G. Vinogradov, V. A. Ferapontov,
J. Mol. Catal. A: Chem. 2009, 311, 61–65; b) P. J. Fagan, M. H. Voges,
R. M. Bullock, Organometallics 2010, 29, 1045–1048.
3] a) R. Pratap, V. J. Ram, Tetrahedron Lett. 2006, 47, 5389–5391; b) J. J. de
Freitas, J. C. R. de Freitas, L. P. da Silva, J. R. de Freitas Filho, G. Y. V.
Kimura, R. M. Srivastava, Tetrahedron Lett. 2007, 48, 6195–6198; c) W.
Shen, J. S. Kim, P. E. Kish, J. Zhang, S. Mitchell, B. G. Gentry, J. M. Breiten-
bach, J. C. Drach, J. Hilfinger, Bioorg. Med. Chem. Lett. 2009, 19, 792–
was obtained as a white solid and characterized by NMR and FTIR
spectroscopy.
Characterization
1
[
MIMBS] PW O : H NMR (400.3 MHz, D O): d=8.65 (s, 1H), 7.53
3
12 40
2
796; d) R. J. Mancini, R. C. Li, Z. P. Tolstyka, H. D. Maynard, Org. Biomol.
(
d, 1H), 7.47 (d, 1H), 4.65 (s, 1H), 4.32–4.30 (t, 2H), 4.00 (s, 3H),
Chem. 2009, 7, 4954–4959.
2
2
3
.92–2.90 (t, 2H), 2.10–2.06 (m, 2H), 1.77–1.73 ppm (m,
[
4] G. D. Yadav, I. V. Borkar, Ind. Eng. Chem. Res. 2008, 47, 3358–3363.
1
3
H); C NMR (100.6 MHz, D O): d=135.7, 124.1, 122.6, 50.3, 49.3,
[5] a) A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney,
C. A. Eckert, W. J. Frederick Jr, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R.
Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484–
489; b) Y. Yang, R. R. Sharma-Shivappa, J. C. Burns, J. J. Cheng, Energy
Fuels 2009, 23, 5626–5635; c) O. Busse, K. Rꢂuchle, W. Reschetilowski,
ChemSusChem 2010, 3, 563–567.
2
31
6.0, 28.5, 21.3 ppm; P NMR (160.1 MHz, D O): d=ꢀ15.2; FTIR
2
(
KBr): n¯ =1230, 1170 (both S=O), 1080, 1044 (both PꢀO ), 979 (Wꢀ
a
ꢀ1
O ), 897, 806 (both PꢀO ), 622 cm (CꢀH).
d
b/c
1
2
6
1
-Butoxymethylfuran: H NMR (400.3 MHz, CDCl ): d=7.44 (s, 1H),
3
.38–6.37 (d, 1H), 6.35–6.34 (d, 1H), 4.46 (s, 2H), 3.52–3.49 (t, 2H),
[6] a) J. Hegner, K. C. Pereira, B. DeBoef, B. L. Lucht, Tetrahedron Lett. 2010,
13
5
1, 2356–2358; b) J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539–
.65–1.58 (m, 2H), 1.44–1.36 (m, 2H), 0.97–0.93 (t, 3H); C NMR
554.
(
100.6 MHz, CDCl ) d=152.1, 142.7, 110.4, 108.9, 70.1, 64.8, 31.7,
3
+
[7] a) B. Girisuta, B. Danon, R. Manurung, L. P. B. M. Janssen, H. J. Heeres, Bi-
oresour. Technol. 2008, 99, 8367–8375; b) T. Nissinen, P. Oinas, J. Reuna-
nen, WO2009130386 A1.
1
9.3, 13.9. HRMS calcd. for C H O Na [M+Na] : 177.0891;
9 14 2
found: 177.0889.
[
8] a) B. M. Nagaraja, A. H. Padmasri, B. D. Raju, K. S. Rama Rao, J. Mol. Catal.
A: Chem. 2007, 265, 90–97; b) A. B. Merlo, V. Vetere, J. F. Ruggera, M. L.
Casella, Catal. Commun. 2009, 10, 1665–1669.
Furfuryl alcohol alcoholysis
[
9] B. Capai, G. Lartigau, US Patent 5175358 B2, 1992.
In a typical run, the procedure for the alcoholysis of furfuryl alcohol
is as follows: Furfuryl alcohol (110.7 mg, 1.130 mmol), n-butanol
[
10] a) N. Guigo, A. Mija, L. Vincent, N. Sbirrazzuoli, Phys. Chem. Chem. Phys.
007, 9, 5359–5366; b) S. Bertarione, F. Bonino, F. Cesano, S. Jain, M. Za-
2
(
5 mL), and [MIMBS] PW O (200 mg) were added to a 25 mL
3 12 40
netti, D. Scarano, A. Zecchina, J. Phys. Chem. B 2009, 113, 10571–10574.
11] a) Y. Y. Wu, Z. H. Fu, D. L. Yin, Q. Xu, F. L. Liu, C. L. Lu, L. Q. Mao, Green
Chem. 2010, 12, 696–700; b) D. S. Su, J. Zhang, B. Frank, A. Thomas,
X. C. Wang, J. Paraknowitsch, R. Schlçgl, ChemSusChem 2010, 3, 169–
180.
round bottom flask equipped with a reflux condenser. The mixture
was heated at 1108C with vigorous stirring. At different time inter-
vals, samples (100 mL) were withdrawn, diluted with an internal
[
ꢀ
1
standard solution containing methyl palmitate (12 mgmL ), centri-
[21]
fuged at 10000 rpm for 5 min, and then analyzed.
[12] J. P. Lange, W. D. van de Graaf, R. J. Haan, ChemSusChem 2009, 2, 437–
41.
4
[
13] a) R. Kreiter, M. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof,
J. F. Vente, ChemSusChem 2009, 2, 158–160; b) M. J. dos Reis, V. Prevot,
F. Leroux, F. Silverio, J. B. Valim, J. Porous Mater. 2010, 17, 443–451.
Analysis of Products
The products were analyzed on by gas chromatography (GC) on a
890F instrument (Techcomp Scientific Instrument Co., Ltd., China)
[14] Y. Leng, J. Wang, D. R. Zhu, X. Q. Ren, H. Q. Ge, L. Shen, Angew. Chem.
2009, 121, 174–177; Angew. Chem. Int. Ed. 2009, 48, 168–171;.
7
[
[
[
15] a) F. Chai, F. H. Cao, F. Y. Zhai, Y. Chen, X. H. Wang, Z. M. Su, Adv. Synth.
Catal. 2007, 349, 1057–1065; b) D. S. Pito, I. Matos, I. M. Fonseca, A. M.
Ramos, J. Vital, J. E. Castanheiro, Appl. Catal. A 2010, 373, 140–146.
16] a) L. Pranger, R. Tannenbaum, Macromolecules 2008, 41, 8682–8687;
b) A. Mija, P. Navard, C. Peiti, D. Babor, N. Guigo, Eur. Polym. J. 2010, 46,
with a crosslinked capillary FFAP column (30 mꢁ0.32 mmꢁ0.4 mm)
equipped with a flame ionization detector. Operating conditions
were as follows: The flow rate of the N carrier gas was
2
ꢀ
1
4
0 mLmin , the injection port temperature was 2508C, the oven
temperature was 1908C, and the detector temperature was 2808C.
The peaks were identified by comparison of the retention time of
the unknown compounds with those of standard compounds and
quantified based on the internal standard method.
1380–1387.
17] Y. Leng, J. Wang, D. R. Zhu, Y. J. Wu, P. P. Zhao, J. Mol. Catal. A: Chem.
2009, 313, 1–6.
[18] a) K. Suwannakarn, E. Lotero, K. Ngaosuwan, J. G. Goodwin, Ind. Eng.
Chem. Res. 2009, 48, 2810–2818; b) V. Salinier, G. P. Niccolai, V. Dufaud,
J. M. Basset, Adv. Synth. Catal. 2009, 351, 2168–2177.
Acknowledgements
[19] R. I. Khusnutdinov, A. R. Baiguzina, A. A. Smirnov, R. R. Mukminov, U. M.
Whemilev, Russ. J. Appl. Chem. 2007, 80, 1687–1690.
[
[
20] W. D. Van de Graaf, J. Lange, US Patent 7265239.
21] S. B. Vinson, G. W. Frankie, H. J. Williams, J. Chem. Ecol. 2006, 32, 2013–
Financial support provided by the National High-Tech Research
and Development Program of China (2007AA05Z403) and the
Knowledge Innovation Program of CAS (KGCXZ-YW-336) are
greatly acknowledged.
2021.
Received: July 25, 2010
118
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ChemSusChem 2011, 4, 112 – 118