Organic Letters
Letter
(6) Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem., Int.
Ed. 2008, 47, 8727−8730.
procedure is expected to significantly expand the scope of
organocatalysis for new reaction developments. Detailed
mechanistic studies via experimental and computational
approaches are being pursued in our laboratories and will be
communicated in due course.
(7) For some examples of NHC-catalyzed oxidation of aldehydes to
carboxylic acids and acid derivatives, see: (a) Chow, K. Y.-K.; Bode, J.
W. J. Am. Chem. Soc. 2004, 126, 8126−8127. (b) Reynolds, N. T.;
Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518−9519.
(c) Zeitler, K. Org. Lett. 2006, 8, 637−640. (d) Noonan, C.;
Baragwanath, L.; Connon, S. J. Tetrahedron Lett. 2008, 49, 4003−4006.
(e) Maki, B. E.; Scheidt, K. A. Org. Lett. 2008, 10, 4331−4334. (f) De
Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190−
1191. (g) Ling, K. B.; Smith, A. D. Chem. Commun. 2011, 47, 373−
375. (h) Iwahana, S.; Iida, H.; Yashima, E. Chem.Eur. J. 2011, 17,
8009−8013. (i) Maji, B.; Vedachalan, S.; Ge, X.; Cai, S.; Liu, X.-W. J.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data for all new
compounds. This material is available free of charge via the
Org. Chem. 2011, 76, 3016−3023. (j) Zhao, J.-F.; Muck-Lichtenfeld,
̈
AUTHOR INFORMATION
Corresponding Authors
C.; Studer, A. Adv. Synth. Catal. 2013, 355, 1098−1106. (k) Delany, E.
G.; Fagan, C.-L.; Gundala, S.; Zeitler, K.; Connon, S. J. Chem.
Commun. 2013, 49, 6513−6515.
■
(8) Reviews of oxidative NHC catalysis: (a) Knappke, C. E. I.;
Imami, A.; Jacobi von Wangelin, A. ChemCatChem 2012, 4, 937−941.
(b) De Sarkar, S.; Biswas, A.; Samanta, R. C.; Studer, A. Chem.Eur. J.
2013, 19, 4664−4678.
Notes
(9) For some examples of reductive dimerization of nitroalkenes, see:
(a) Sonn, A.; Schellenberg, A. Ber. Dtsch. Chem. Ges. 1917, 50, 1513−
1525. (b) Kohler, E. P.; Drake, N. L. J. Am. Chem. Soc. 1923, 45,
1281−1289. (c) Tatsumi, K.; Yamada, H.; Yoshimura, H.; Kawazoe, Y.
Arch. Biochem. Biophys. 1982, 213, 689−694. (d) Sera, A.; Fukumoto,
S.; Yoneda, T.; Yamada, H. Heterocycles 1986, 24, 697−702. (e) Sera,
A.; Fukumoto, S.; Tamura, M.; Takabatake, K.; Yamada, H.; Itoh, K.
Bull. Chem. Soc. Jpn. 1991, 64, 1787−1791. (f) Namboothiri, I. N. N.;
Hassner, A. J. Organomet. Chem. 1996, 518, 69−77. (g) Mikesell, P.;
Schwaebe, M.; DiMare, M.; Little, R. D. Acta Chem. Scand. 1999, 53,
792−799. (h) Bretschneider, H.; Biemann, K. Monatsh. Chem. 1952,
83, 71−79. (i) Ankner, T.; Hilmersson, G. Tetrahedron Lett. 2007, 48,
5707−5710.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Generous financial support for this work was provided by the
Singapore National Research Foundation and Nanyang
Technological University (NTU). We thank Dr. Y. Li and
Dr. R. Ganguly (NTU) for X-ray structure analysis.
REFERENCES
(1) Ragsdale, S. W. Chem. Rev. 2003, 103, 2333−2346.
■
(2) Chabrier
̀
e, E.; Verned
̀
e, X.; Guigliarelli, B.; Charon, M. H.;
Hatchikian, E. C.; Fontecilla-Camps, J. C. Science 2001, 294, 2559−
2563.
(10) Relative configurations of dl-3a and meso-3a were assigned via
comparison with reported NMR spectra; see ref 9e,f.
(3) Mansoorabadi, S. O.; Seravalli, J.; Furdui, C.; Krymov, V.; Gerfen,
G. J.; Begley, T. P.; Melnick, J.; Ragsdale, S. W.; Reed, G. H.
Biochemistry 2006, 45, 7122−7131.
(11) Relative configuration of the major diastereoisomer was assigned
on the basis of the X-ray structure of dl-3d (see the Supporting
Information).
(4) (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719−3726.
(b) Enders, D.; Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79,
1217−1221. (c) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.;
Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696−
9697. (d) Enders, D.; Kallfass, U. Angew. Chem., Int. Ed. 2002, 41,
1743−1745. (e) Enders, D.; Niemeier, O.; Balensiefer, T. Angew.
Chem., Int. Ed. 2006, 45, 1463−1467. (f) Takikawa, H.; Hachisu, Y.;
Bode, J. W.; Suzuki, K. Angew. Chem., Int. Ed. 2006, 45, 3492−3494.
(g) Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org.
Chem. 2009, 74, 9214−9217. (h) DiRocco, D. A.; Rovis, T. Angew.
Chem., Int. Ed. 2012, 51, 5904−5906. (i) Thai, K.; Langdon, S. M.;
Bilodeau, F.; Gravel, M. Org. Lett. 2013, 15, 2214−2217.
(12) Stetter reactions involving nitroalkene: (a) DiRocco, D. A.;
Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am. Chem. Soc. 2009, 131,
10872−10874. (b) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011,
133, 10402−10405. (c) DiRocco, D. A.; Noey, E. L.; Houk, K. N.;
Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 2391−2394.
(13) Grimshaw, J. Electrochemical Reactions and Mechanisms in
Organic Chemistry; Elsevier: Amsterdam, 2000; Chapter 3.
(5) (a) Stetter, H.; Kuhlmann, H. Chem. Ber. 1976, 109, 2890−2896.
(b) Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639−647. (c) Enders,
D.; Breuer, K.; Runsink, J.; Teles, J. H. Helv. Chim. Acta 1996, 79,
1899−1902. (d) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2002, 124, 10298−10299. (e) Mattson, A. E.; Bharadwaj, A. R.;
Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314−2315. (f) Kerr, M. S.;
Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876−8877. (g) Pesch, J.;
Harms, K.; Bach, T. Eur. J. Org. Chem. 2004, 2025−2035. (h) Read de
Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284−6289.
(i) Myers, M. C.; Bharadwaj, A. R.; Milgram, B. C.; Scheidt, K. A. J.
Am. Chem. Soc. 2005, 127, 14675−14680. (j) Mennen, S. M.; Blank, J.
́
T.; Tran-Dube, M. B.; Imbriglio, J. E.; Miller, S. J. Chem. Commun.
2005, 195−197. (k) Mattson, A. E.; Bharadwaj, A. R.; Zuhl, A. M.;
Scheidt, K. A. J. Org. Chem. 2006, 71, 5715−5724. (l) Enders, D.; Han,
J.; Henseler, A. Chem. Commun. 2008, 3989−3991. (m) Liu, Q.;
Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066−14067.
(n) Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed.
2011, 50, 1410−1414. (o) Zhang, J.; Xing, C.; Chi, Y. R. J. Am. Chem.
Soc. 2013, 135, 8113−8116.
5681
dx.doi.org/10.1021/ol5027415 | Org. Lett. 2014, 16, 5678−5681