Organic Letters
Letter
T.; Manor, B. C.; Tomson, N. C.; Walsh, P. J. J. Am. Chem. Soc. 2017,
139, 8337.
Dan Xiong − Technical Institute of Fluorochemistry (TIF),
Institute of Advanced Synthesis, School of Chemistry and
Molecular Engineering, Nanjing Tech University, Nanjing
211800, P. R. China
̈
(10) Li, M.; Yucel, B.; Adrio, J.; Bellomo, A.; Walsh, P. J. Chem. Sci.
2014, 5, 2383.
(11) (a) Hussain, N.; Frensch, G.; Zhang, J.; Walsh, P. J. Angew.
Chem., Int. Ed. 2014, 53, 3693. (b) Wang, Z.; Zheng, Z.; Xu, X.; Mao,
J.; Walsh, P. J. Nat. Commun. 2018, 9, 3365. (c) Liu, G.; Walsh, P. J.;
Mao, J. Org. Lett. 2019, 21, 8514. (d) Mao, J.; Wang, Z.; Xu, X.; Liu,
G.; Jiang, R.; Guan, H.; Zheng, Z.; Walsh, P. J. Angew. Chem., Int. Ed.
2019, 58, 11033.
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
(12) Andrews, I. P.; Lewis, N. J.; McKillop, A.; Wells, A. S.
Heterocycles 1996, 43, 1151.
(13) (a) Buslov, I.; Song, F.; Hu, X. Angew. Chem., Int. Ed. 2016, 55,
12295. (b) Zaranek, M.; Pawluc, P. ACS Catal. 2018, 8, 9865. (c) Hu,
M.-Y.; He, Q.; Fan, S.-J.; Wang, Z.-C.; Liu, L.-Y.; Mu, Y.-J.; Peng, Q.;
Zhu, S.-F. Nat. Commun. 2018, 9, 221. (d) Cheng, B.; Liu, W.; Lu, Z.
J. Am. Chem. Soc. 2018, 140, 5014.
(14) (a) Schmidtmann, E. S.; Oestreich, M. Chem. Commun. 2006,
3643. (b) Min, G. K.; Hernandez, D.; Skrydstrup, T. Acc. Chem. Res.
2013, 46, 457. (c) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136,
2236. (d) Chu, C. K.; Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2016,
138, 6404. (e) Vulovic, B.; Cinderella, A. P.; Watson, D. A. ACS Catal.
2017, 7, 8113. (f) Zarate, C.; Nakajima, M.; Martin, R. J. Am. Chem.
Soc. 2017, 139, 1191.
(15) (a) Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.;
Hayamizu, T.; Chatani, N.; Murai, S. J. Organomet. Chem. 2003, 686,
134. (b) Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127,
5022. (c) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132,
17092. (d) Ishiyama, T.; Saiki, T.; Kishida, E.; Sasaki, I.; Ito, H.;
Miyaura, N. Org. Biomol. Chem. 2013, 11, 8162. (e) Lee, T.; Hartwig,
J. F. Angew. Chem., Int. Ed. 2016, 55, 8723.
(16) (a) De Martino, G.; La Regina, G.; Di Pasquali, A.; Ragno, R.;
Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico,
M.; Silvestri, R. J. Med. Chem. 2005, 48, 4378. (b) Davies, D. R.;
Mamat, B.; Magnusson, O. T.; Christensen, J.; Haraldsson, M. H.;
Mishra, R.; Pease, B.; Hansen, E.; Singh, J.; Zembower, D.; Kim, H.;
Kiselyov, A. S.; Burgin, A. B.; Gurney, M. E.; Stewart, L. J. J. Med.
Chem. 2009, 52, 4694. (c) Lyseng-Williamson, K. A. Drugs 2010, 70,
1579. (d) Yin, L.; Hu, Q.; Hartmann, R. W. J. Med. Chem. 2013, 56,
460.
ACKNOWLEDGMENTS
■
We acknowledge the National Natural Science Foundation of
China (21801128 and 22071107), Natural Science Foundation
of Jiangsu Province, China (BK20170965), Nanjing Tech
University (39837112), and Cultivation Program for Excellent
Doctoral Dissertation of Nanjing Tech University (2020-18)
for financial support.
REFERENCES
■
(1) (a) Morse, D. E. Trends Biotechnol. 1999, 17, 230. (b) Hill, M.
S.; Hitchcock, P. B. J. Organomet. Chem. 2002, 664, 182. (c) Showell,
G. A.; Mills, J. S. Drug Discovery Today 2003, 8, 551. (d) Frampton,
M. B.; Zelisko, P. M. Silicon 2009, 1, 147. (e) Franz, A. K.; Wilson, S.
O. J. Med. Chem. 2013, 56, 388. (f) Rémond, E.; Martin, C.; Martinez,
J.; Cavelier, F. Chem. Rev. 2016, 116, 11654.
(2) For organosilanes as potential carboanions, see: (a) Das, M.;
O’Shea, D. F. Chem. - Eur. J. 2015, 21, 18717. (b) Manvar, A.; O’Shea,
D. F. Eur. J. Org. Chem. 2015, 2015, 7259. For organosilanes
employed in Tamao−Kumada oxidations, see: (c) Tamao, K.;
Kumada, M.; Sugimoto, T. J. Chem. Soc. D 1970, 285. (d) Tamao,
K.; Kumada, M. J. Organomet. Chem. 1971, 31, 35. (e) Tamao, K.;
Kumada, M.; Maeda, K. Tetrahedron Lett. 1984, 25, 321. For Hiyama
coupling, see: (f) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40,
4893. (g) Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7,
631. (h) Idris, M. A.; Lee, S. Org. Lett. 2020, 22, 9190. (i) Lu, M.-Z.;
Ding, X.; Shao, C.; Hu, Z.; Luo, H.; Zhi, S.; Hu, H.; Kan, Y.; Loh, T.-
P. Org. Lett. 2020, 22, 2663.
(3) (a) Seiler, O.; Burschka, C.; Fischer, M.; Penka, M.; Tacke, R.
Inorg. Chem. 2005, 44, 2337. (b) Corey, J. Y. Chem. Rev. 2016, 116,
11291. (c) Hillenbrand, J.; Leutzsch, M.; Fuerstner, A. Angew. Chem.,
Int. Ed. 2019, 58, 15690. (d) Li, Y.; Krause, J. A.; Guan, H.
Organometallics 2020, 39, 3721. (e) Hillenbrand, J.; Leutzsch, M.;
Yiannakas, E.; Gordon, C. P.; Wille, C.; Noethling, N.; Coperet, C.;
Fuerstner, A. J. Am. Chem. Soc. 2020, 142, 11279.
(4) For reviews, see: (a) Min, G. K.; Hernandez, D.; Skrydstrup, T.
Acc. Chem. Res. 2013, 46, 457. For the importance of heterocycle-
containing silane, see: (b) Desbordes, P.; Gourgues, M.; Lempereur,
V.; Cristau, P.; Dufour, J.; Loque, D.; Thomas, V. Pat. Appl.
WO2019/122319A1, 2019. (c) Okten, S.; Ekiz, M.; Kocyigit, U. M.;
Tutar, A.; Celik, I.; Akkurt, M.; Gokalp, F.; Taslimi, P.; Gulcin, I. J.
Mol. Struct. 2019, 1175, 906. (d) Reddy, D. S., Vasudevan, N., Wagh,
S. B.; Ramesh, R. Pat. Appl. WO2014/195970A1, 2014.
(5) (a) Hayashi, T.; Konishi, M.; Ito, H.; Kumada, M. J. Am. Chem.
Soc. 1982, 104, 4962. (b) Hayashi, T.; Konishi, M.; Okamoto, Y.;
Kabeta, K.; Kumada, M. J. Org. Chem. 1986, 51, 3772.
(6) Hofstra, J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S. E. J.
Am. Chem. Soc. 2018, 140, 139.
(7) (a) Yi, H.; Mao, W.; Oestreich, M. Angew. Chem., Int. Ed. 2019,
58, 3575. (b) Schwarzwalder, G. M.; Matier, C. D.; Fu, G. C. Angew.
Chem., Int. Ed. 2019, 58, 3571.
(8) Zhang, J.; Bellomo, A.; Trongsiriwat, N.; Jia, T.; Carroll, P. J.;
Dreher, S. D.; Tudge, M. T.; Yin, H.; Robinson, J. R.; Schelter, E. J.;
Walsh, P. J. J. Am. Chem. Soc. 2014, 136, 6276.
(9) Jia, T.; Zhang, M.; McCollom, S. P.; Bellomo, A.; Montel, S.;
Mao, J.; Dreher, S. D.; Welch, C. J.; Regalado, E. L.; Williamson, R.
3003
Org. Lett. 2021, 23, 3000−3003