JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
RAPID COMMUNICATION
3 (a) A. L. Logothetis, Prog. Polym. Sci. 1989, 14, 251–272; (b)
A. Taguet, B. Ameduri, B. Boutevin, Adv. Polym. Sci. 2005, 184,
127–211.
(Supporting Information Fig. S6). The corresponding FTIR
spectrum displayed a small band at 1675 cm21 due to the
presence of C@N stretching vibrations in tetrazole.18 As
an evidence of efficient crosslinking, the film was totally
insoluble in perfluoro(butyltetrahydrofuran).
4 R. Huisgen, In 1,3-Dipolar Cycloaddition Chemistry; A. Padwa
Ed.; Wiley: New York, 1984. pp. 1–176.
5 H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2001, 40, 2004–2021.
Crosslinked films with various 5:perfluoroelastomer weight
ratios were analyzed by thermogravimetric analysis (TGA)
under air to compare their degradation profile to that of a
perfluoroelastomer film obtained from the same procedure
but without any addition of crosslinking agent 5 (Fig. 2).
Overall, the thermograms revealed an improvement by about
20 ꢀC of the thermal stability under air for the press cured
films with telechelic crosslinking agent 5. In contrast to poly-
meric tetrazoles that decompose with evolution of significant
6 (a) R. A. Evans, Aust. J. Chem. 2007, 60, 384–395; (b) D.
Fournier, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev.
2007, 36, 1369–1380; (c) W. H. Binder, R. Sachsenhofer, Macro-
mol. Rapid Commun. 2008, 29, 952–981; (d) E. Hwang, K. L.
Lusker, J. C. Garno, Y. Losovyj, E. E. Nesterov, Chem. Com-
mun. 2011, 47, 11990–11992; (e) A. Z. Samuel, S.
Ramakrishnan, Langmuir 2013, 29, 1245–1257; (f) J. Han, Y.
Zheng, S. Zheng, S. Li, T. Hu, A. Tang, C. Gao, Chem.
Commun. 2014, 50, 8712–8714.
R
amounts of gas at 120–250 ꢀC,19 DuPontTM KalrezV cross-
7 (a) A. Soules, B. Ameduri, B. Boutevin, G. Calleja, Macromo-
lecules 2010, 43, 4489–4499; (b) T. Cai, E. T. Kang, K. G. Neoh,
Macromolecules 2011, 44, 4258–4268; (c) R. Vukic´evic´, U.
linked perfluoroelastomers exhibit an improved thermal
behavior, thanks to the perfluorinated backbone that acts as
a protective shield for tetrazoles.
€
€
Schwadtke, S. Schmucker, P. Schafer, D. Kuckling, S.
Beuermann, Polym. Chem. 2012, 3, 409–414; (d) T. Cai, K. G.
Neoh, E. T. Kang, In Progress in Controlled Radical Polymeriza-
tion: Materials and Applications; K. Matyjaszewski, B. Sumerlin,
N. Tsarevsky, Eds.; ACS Symposium Series; American Chemi-
cal Society: Washington, DC, 2012; (e) Y.-W. Yang, J.
Hentschel, Y.-C. Chen, M. Lazari, H. Zeng, R. M. van Dam, Z.
Guan, J. Mater. Chem. 2012, 22, 1100–1106.
To summarize, on the basis of a model study, DuPontTM
R
KalrezV perfluoroelastomer that bears pendant nitrile groups
was successfully crosslinked with a bis-azido fluorinated cur-
ing agent by “click” azide–nitrile cycloaddition. Thermogravi-
metric analyses of the resulting press cured films revealed
an improvement by about 20 ꢀC of the thermal degradation
profile under air, compared to that of the corresponding
uncured fluoroelastomer. This method is simple to imple-
ment and requires much less energy than that currently
used in the fluoroelastomers industry.
8 (a) Z. P. Demko, K. B. Sharpless, Org. Lett. 2001, 3, 4091–
4095; (b) L. Bosch, J. Vilarrasa, Angew. Chem. Int. Ed. 2007, 46,
3926–3930.
(accessed July 15, 2014).
10 J. Francois, Chemie-Anlagen 1 Verfahren 2008, 41, 28–29.
11 A. L. Logothetis (E. I. Du Pont de Nemours & Co), U.S. Pat-
ACKNOWLEDGMENTS
The authors thank the DuPont Performance Polymers company
12 R. J. Dams, S. G. Corveleyn, W. M. A Grootaert, G. D.
Dahlke, M. A. Guerra (3M Innovative Properties Company), WO
2012005972, January 12, 2012.
R
for sponsoring this work and for kindly providing KalrezV. 3M
and AkzoNobel are also acknowledged for supplying perfluor-
o(butyltetrahydrofuran) and di-(4-tert-butylcyclohexyl) perox-
ydicarbonate, respectively.
13 J. Scheirs, Modern Fluoropolymers: High Performance Poly-
mers for Diverse Applications; Wiley: Chichester, UK, 1997.
14 A. Manseri, B. Ameduri, B. Boutevin, M. Kotora, M. Hajek,
G. Caporiccio, J. Fluorine Chem. 1995, 73, 151–158.
15 J. Balague, B. Ameduri, B. Boutevin, G. Caporiccio, J. Fluo-
rine Chem. 2000, 102, 253–268.
REFERENCES AND NOTES
1 (a) S. Ebnesajjad, Fluoroplastics, Vol. 1: Non-Melt Processible
Fluoroplastics, The Definitive User’s Guide and Databook; Wil-
liam Andrew, Inc.: Norwich, NY, 2000; (b) S. Ebnesajiad; P. R.
Khaladkar, Fluoropolymer Applications in Chemical Processing
Industries, The Definitive User’s Guide and Databook; William
Andrew, Inc.: Norwich, NY, 2004; (c) B. Ameduri; B. Boutevin,
Well-Architectured Fluoropolymers: Synthesis, Properties and
Applications; Elsevier: Amsterdam, 2004.
16 A. A. Malik, D. Tzeng, P. Cheng, K. Baum, J. Org. Chem.
1991, 56, 3043–3044.
17 M.-H. Hung, B. Ameduri, G. Tillet (Dupont Performance Elas-
tomers L.L.C., Centre National de la Recherche Scientifique, E.I.
du Pont de Nemours and Company), US 2010/0324222, Decem-
ber 23, 2010.
18 S. Yan, M. Zhao, G. Lei, Y. Wei, J. Appl. Polym. Sci. 2012,
125, 382–389.
2 (a) B. Ameduri, B. Boutevin, G. Kostov, Prog. Polym. Sci.
2001, 26, 105–187; (b) B. Ameduri, B. Boutevin, J. Fluorine
Chem. 2005, 126, 221–229; (c) A. L. Moore, Fluoroelastomers
Handbook; PLD Publishers: Norwich, New York, 2006; (d) B.
Ameduri, Chem. Rev. 2009, 109, 6632–6686.
19 (a) N. V. Tsarevsky, K. V. Bernaerts, B. Dufour, F. E. Du Prez,
K. Matyjaszewski, Macromolecules 2004, 37, 9308–9313; (b) W.
R. Carpenter (United States Dept. of the Navy), U.S. Patent
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 00, 000–000
3