7
492
J . Org. Chem. 1999, 64, 7492-7497
Asym m etr ic C-H Oxid a tion of vic-Diols to r-Hyd r oxy Keton es by a
F r u ctose-Der ived Dioxir a n e: Electr on ic Effects on th e
En a n tioselectivity of Oxygen Tr a n sfer
Waldemar Adam,* Chantu R. Saha-M o¨ ller, and Cong-Gui Zhao
Institute of Organic Chemistry, University of W u¨ rzburg, Am Hubland, D-97074 W u¨ rzburg, Germany
Received May 12, 1999
A mechanistic study on the enantioselective C-H oxidation of vic-diols with the in-situ-generated
dioxirane from the fructose-derived ketone 1 is presented. The asymmetrization of meso-configured
and the kinetic resolution of racemic vic-diols 2 afforded the optically active R-hydroxy ketones 3
in opposite configurations with moderate to good ee values. Significant electronic effects on the
enantioselectivity of C-H insertion have been observed, which are explained in terms of the
hydrogen-bonded transition-state structures for the concerted C-H oxygen insertion.
In tr od u ction
Several methods are available for the preparation of
optically active R-hydroxy ketones, which are valuable
Dioxiranes, either in isolated form1 or in-situ-gener-
10
building blocks in asymmetric synthesis. In metal-free
2
ated, have been established as very reactive yet highly
methods, silyl enol ethers and enol esters have been
3
11
selective oxidants. One of the highlights of dioxirane
oxidized to optically active R-hydroxy ketones by the
chemistry is the efficient oxyfunctionalization of unacti-
in-situ-generated dioxirane from the fructose-derived
4
12
vated as well as activated C-H bonds. Although the
ketone 1. Moreover, it is well-known that vic-diols may
possibility of a radical-chain reaction has been recently
be readily oxidized by dioxiranes to yield the correspond-
raised,5 convincing experimental evidence as well as
6
13
ing R-hydroxy ketones. When optically active vic-diols
7
theoretical work have confirmed the concerted mecha-
were used, the resulting R-hydroxy ketones were obtained
with complete retention of configuration.1 Since opti-
cally active dioxiranes have been established as efficient
3b
nism for this insertion reaction, especially under carefully
6
a
controlled experimental conditions. The concerted na-
ture of this oxidation process provides an opportunity to
oxidants for the asymmetric epoxidation of unfunction-
8
12,14
conduct enantioselective C-H oxidations, which still
alized olefins,
we envisaged that optically active
present a formidable challenge in organic chemistry.9
R-hydroxy ketones should be accessible through asym-
metrization of meso-configured vic-diols or kinetic resolu-
tion of racemic vic-diols by enantioselective C-H oxida-
tion. In a recent paper,15 we described such an oxidation
of vic-diols to enantiomerically enriched R-hydroxy ke-
tones by the in-situ-generated, fructose-derived dioxirane
in eq 1 and demonstrated the preparative convenience
of this direct and metal-free asymmetric oxidation. Pres-
ently, we report the electronic substituent effects on the
*
To whom correspondence should be addressed. Tel: +49-
31-8885340. Fax: +49-931-8884756. E-mail: adam@chemie.uni-
wuerzburg.de.
9
(
1) Murray, R. W.; J eyaraman, R. J . Org. Chem. 1985, 50, 2847-
2
1
853. (b) Adam, W.; Bialas, J .; Hadjiarapoglou, L. P. Chem. Ber. 1991,
24, 2377.
(2) Curci, R.; Fiorentino, M.; Triosi, L.; Edwards, J . O.; Pater, R. H.
J . Org. Chem. 1980, 45, 4758-4760. (b) Adam, W.; Hadjiarapogolou,
L. P.; Smerz, A. Chem. Ber. 1991, 124, 227-232. (c) Yang, D.; Wong,
M.-K.; Yip, Y.-C. J . Org. Chem. 1995, 60, 3887-3889. (d) Denmark, S.
E.; Wu, Z. J . Org. Chem. 1997, 62, 8964-8965. (e) Denmark, S. E.;
Wu, Z. J . Org. Chem. 1998, 63, 2810-2811. (f) Frohn, M.; Wang, Z.-
X.; Shi, Y. J . Org. Chem. 1998, 63, 6425-6426.
(8) Punniyamurthy, T.; Miyafuji, A.; Katsuki, T. Tetrahedron Lett.
1998, 39, 8295-8298. (b) Miyafuji, A.; Katsuki, T. Tetrahedron 1998,
54, 10339-10348. (c) Kawasaki, K.; Katsuki, T. Tetrahedron 1997, 53,
6337-6350. (d) S o¨ dergen, M. J .; Andersson, P. G. Tetrahedron Lett.
1996, 37, 7577-7580. (e) Hamada, T.; Irie, R.; Mihara, J .; Hamachi,
K.; Katsuki, T. Tetrahedron 1998, 54, 10017-10028. (f) Groves, J . T.;
Viski, P. J . Org. Chem. 1990, 55, 3628-3634.
(9) Breslow, R. Acc. Chem. Res. 1995, 28, 146-153. (b) Arndsten,
B. A.; Bergman, R. G.; Mobley, A.; Peterson, P. H. Acc. Chem. Res.
1992, 25, 504-512. (c) Asensio, G.; Gonz a´ lez-N u´ n˜ ez, M. E.; Bernardini,
C. B.; Mello, R.; Adam, W. J . Am. Chem. Soc. 1993, 115, 7250-7253.
(d) Reiser, O. Angew. Chem., Int. Ed. Engl. 1994, 33, 69-72.
(10) Hanessian, S. Total Synthesis of Natural Products: The Chiron
Approach, Pergamon: New York, 1983; Chapter 2. (b) Davis, F. A.;
Chen, B.-C. Chem. Rev. 1992, 92, 919-934.
(11) Adam, W.; Fell, R. T.; Saha-M o¨ ller, C. R.; Zhao, C.-G. Tetra-
hedron: Asymmetry 1998, 9, 397-401. (b) Zhu, Y.; Tu, Y.; Yu, H.; Shi,
Y. Tetrahedron Lett. 1998, 39, 7819-7822.
(12) Tu, Y.; Wang, Z.-X.; Shi, Y. J . Am. Chem. Soc. 1996, 118, 9806-
9807. (b) Wang, Z.-X.; Tu, Y.; Frohn, M.; Shi, Y. J . Org. Chem. 1997,
62, 2328-2329. (c) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J .-R.; Shi,
Y. J . Am. Chem. Soc. 1997, 119, 11224-11235.
(13) Curci, R.; D’Accolti, L.; Detomaso, A.; Fusco, C.; Takeuchi, K.;
Ohga, Y.; Eaton, P.; Yip, Y.-C. Tetrahedron Lett. 1993, 34, 4559-4562.
(b) D’Accolti, L.; Detomaso, A.; Fusco, C.; Rosa, A.; Curci, R. J . Org.
Chem. 1993, 58, 3600-3601. (c) Bovicelli, P.; Lupattelli, P.; Sanetti,
A.; Mincione, E. Tetrahedron Lett. 1995, 36, 3031-3034. (d) Bovicelli,
P.; Sanetti, A.; Lupattelli, P. Tetrahedron 1996, 52, 10969-10978.
(3) Adam, W.; Curci, R.; Edwards, J . O. Acc. Chem. Res. 1989, 22,
2
05-211. (b) Murray, R. W. Chem. Rev. 1989, 89, 1187-1201. (c) Curci,
R. In Advances in Oxygenated Process; Baumstark, A. L., Ed.; J AI:
Greenwich, CT, 1990; Vol. 2, Chapter I, pp 1-59. (d) Adam, W.;
Hadjiarapoglou, L. P.; Curci, R.; Mello, R. In Organic Peroxides; Ando,
W., Ed.; Wiley: New York, 1992; Chapter 4, pp 195-219. (e) Curci,
R.; Dinoi, A.; Rubino, M. F. Pure Appl. Chem. 1995, 67, 811-822. (f)
Adam, W.; Smerz, A. K. Bull. Soc. Chim. Belg. 1996, 105, 581-599.
(
2
g) Adam, W.; Smerz, A. K.; Zhao, C.-G. J . Prakt. Chem. 1997, 339,
98-300.
(4) Murray, R. W.; J eyaraman, R.; Mohan, L. J . Am. Chem. Soc.
1
986, 108, 2470-2472. (b) Mello, R.; Fiorentino, M.; Fusco, C.; Curci,
R. J . Am. Chem. Soc. 1989, 111, 6749-6757.
(5) Bravo, A.; Fontana, F.; Fronza, G.; Minisci, F.; Zhao, L. J . Org.
Chem. 1998, 63, 254-263. (b) Vanni, R.; Garden, S. J .; Banks, J . T.;
Ingold, K. U. Tetrahedron Lett. 1995, 36, 7999-8002.
(6) Adam, W.; Curci, R.; D’Accolti, L.; Dinoi, A.; Fusco, C.; Gaspar-
rini, F.; Kluge, R.; Paredes, R.; Schulz, M.; Smerz, A. K.; Veloza, L. A.;
Weink o¨ tz, S.; Winde, R. Chem. Eur. J . 1997, 3, 105-109. (b) Simakov,
P. A.; Choi, S.-Y.; Newcomb, M. Tetrahedron Lett. 1998, 39, 8187-
8
190.
(
7) Shustov, G. V.; Rauk, A. J . Org. Chem. 1998, 63, 5413-5422.
b) Du, X.; Houk, K. N. J . Org. Chem. 1998, 63, 6480-6483. (c)
Glukhovtsev, M. N.; Canepa, C.; Bach, R. D. J . Am. Chem. Soc. 1998,
20, 10528-10533.
(
1
1
0.1021/jo9907843 CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/11/1999