Organic Letters
Letter
Scheme 4. Proposed Reaction Mechanism
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Generous financial support from the National Natural Science
Foundation of China (NSFC21502232 and NSFC21572272),
the Innovation Team of “the Double-First Class” Disciplines
(CPU2018GY04 and CPU2018GY35), and the Foundation of
The Open Project of State Key Laboratory of Natural
Medicines (SKLNMZZCX201818) is gratefully acknowledged.
REFERENCES
■
(1) For selected reviews, see: (a) Huang, H.; Ji, X.; Wu, W.; Jiang, H.
Transition metal-catalyzed C−H functionalization of N-oxyenamine
internal oxidants. Chem. Soc. Rev. 2015, 44, 1155. (b) Zhu, R.-Y.;
Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. A Simple and Versatile Amide
Directing Group for C−H Functionalizations. Angew. Chem., Int. Ed.
2016, 55, 10578.
form the intermediate B. The resulting alkenylpalladium
species B undergoes reversible C−H activation to afford the
five-membered C, C-palladacycle intermediates C and D. Next,
the intramolecular alkene coordination and insertion into the
Pd−C bond of the species C generates a seven-membered C,
C-palladacycle intermediate E. Finally, the C−C reductive
elimination of species E results in the formation of the desired
product 3aa and releases Pd(0) to the next catalytic cycle.
In summary, we have developed an unprecedented Pd-
catalyzed alkyne insertion/C−H activation/intramolecular [4
+ 2] carboannulation of alkenes, providing an efficient and
straightforward approach to prepare diversified polycyclics via
the formation of two new rings and three C−C bonds. The in
situ generated alkenylpalladium species via Pd-catalyzed cross-
coupling between aryl iodides and alkynes could efficiently
enable the C−H activation to form a five-membered C, C-
palladacycle intermediate, which then successfully realized the
alkene insertion process. A deuterium labeling experiment
identified that the C−H activation triggered by the in situ
generated alkenylpalladium species is reversible and could be
involved in the rate-determining step. Further study on the
asymmetrical process of this reaction is currently underway in
our laboratory.
(2) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. Rh(III)-
Catalyzed Directed C−H Olefination Using an Oxidizing Directing
Group: Mild, Efficient, and Versatile. J. Am. Chem. Soc. 2011, 133,
2350.
(3) Guimond, N.; Gorelsky, S. I.; Fagnou, K. Rhodium(III)-
Catalyzed Heterocycle Synthesis Using an Internal Oxidant:
Improved Reactivity and Mechanistic Studies. J. Am. Chem. Soc.
2011, 133, 6449.
̈
(4) (a) Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Biotinylated
Rh(III) Complexes in Engineered Streptavidin for Accelerated
Asymmetric C−H Activation. Science 2012, 338, 500. (b) Hyster,
T. K.; Dalton, D. M.; Rovis, T. Ligand design for Rh(III)-catalyzed
C−H activation: an unsymmetrical cyclopentadienyl group enables a
regioselective synthesis of dihydroisoquinolones. Chem. Sci. 2015, 6,
254. (c) Semakul, N.; Jackson, K. E.; Paton, R. S.; Rovis, T.
Heptamethylindenyl (Ind*) enables diastereoselective benzamidation
of cyclopropenes via Rh(III)-catalyzed C−H activation. Chem. Sci.
2017, 8, 1015. (d) Piou, T.; Romanov-Michailidis, F.; Romanova-
Michaelides, M.; Jackson, K. E.; Semakul, N.; Taggart, T. D.; Newell,
B. S.; Rithner, C. D.; Paton, R. S.; Rovis, T. Correlating Reactivity and
Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-
Catalyzed C−H Activation Reactions: An Experimental and
Computational Study. J. Am. Chem. Soc. 2017, 139, 1296.
ASSOCIATED CONTENT
■
(5) (a) Ye, B.; Cramer, N. Chiral Cyclopentadienyl Ligands as
Stereocontrolling Element in Asymmetric C−H Functionalization.
Science 2012, 338, 504. (b) Wodrich, M. D.; Ye, B.; Gonthier, J. F.;
Corminboeuf, C.; Cramer, N. Ligand-Controlled Regiodivergent
Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis:
Experimental and Computational Studies of Different Cyclopenta-
dienyl Ligands. Chem. - Eur. J. 2014, 20, 15409.
(6) (a) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-
W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; Wang, H. Experimental and
Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides
with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated
Heterocycles. J. Am. Chem. Soc. 2017, 139, 3537. (b) Li, B.; Ma, J.;
Wang, N.; Feng, H.; Xu, S.; Wang, B. Ruthenium-Catalyzed Oxidative
C−H Bond Olefination of N-Methoxybenzamides Using an Oxidizing
Directing Group. Org. Lett. 2012, 14, 736.
S
* Supporting Information
The Supporting Information is available free of charge on the
Detailed experimental procedure, characterization data,
1
and copies of H and 13C NMR spectra (PDF)
Accession Codes
mentary crystallographic data for this paper. These data can be
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(7) Romanov-Michailidis, F.; Sedillo, K. F.; Neely, J. M.; Rovis, T.
Expedient Access to 2,3-Dihydropyridines from Unsaturated Oximes
D
Org. Lett. XXXX, XXX, XXX−XXX