60
Y. Sagara et al. / Bioorg. Med. Chem. Lett. 13 (2003) 57–60
Table 4. Effects of piperidine N-substituent on receptor binding and selectivity
No.
R1
R3
Binding affinity (Ki, nM)a
Selectivity
M3
M1
M2
M4
M5
M1/M3
M2/M3
M4/M3
M5/M3
15
2b
2c
2d
2a
H
H
H
H
H
H
Ethyl
n-Propyl
99
37
6.9
2.6
0.25
2500
>2500
800
3100
2600
150
26
1600
970
220
61
5000
>5100
4500
1500
150
25
>68
120
77
31
70
22
10
16
26
32
23
9.2
51
>140
650
580
600
n-Butyl
Cyclohexylmethyl
200
14
0.82
2.3
56
3.3
7
OH
OH
OH
OH
OH
OH
OH
OH
OH
H
Ethyl
n-Propyl
n-Butyl
n-Hexyl
n-Octyl
23
8.3
1.5
0.60
0.12
0.34
2.0
0.13
0.13
>2500
>2500
1300
290
44
27
1400
18
6300
3400
270
45
4.2
1.5
380
740
270
57
>5000
>5000
3500
1000
150
>110
>300
870
480
370
79
700
140
61
270
410
180
75
35
4.4
190
16
6.3
32
33
38
22
13
11
36
6.2
2.3
>220
>600
2300
1700
1300
680
2000
1000
280
8b
8c
8d
8e
8f
8g
8a
8h
13
1.5
3.6
72
0.81
0.30
230
Cyclopropylmethyl
Cyclohexylmethyl
Cyclooctylmethyl
4000
130
37
2.1
0.82
7.9
aValues are the mean of two or more independent assays.
8. The precise physiological roles of the M4 and M5 receptors
remain to be elucidated. See: (a) Gomeza, J.; Zhang, L.; Kos-
tenis, E.; Felder, C.; Bymaster, F.; Brodkin, J.; Shannon, H.;
Xia, B.; Deng, C.; Wess, J. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 10483. (b) Gomeza, J.; Zhang, L.; Kostenis, E.; Felder,
C. C.; Bymaster, F. P.; Brodkin, J.; Shannon, H.; Xia, B.;
Duttaroy, A.; Deng, C.; Wess, J. Life Sci. 2001, 68, 2457. (c)
Bymaster, F. P.; Carter, P. A.; Zhang, L.; Falcone, J. F.;
Stengel, P. W.; Cohen, M. L.; Shannon, H. E.; Gomeza, J.;
Wess, J.; Felder, C. C. Life Sci. 2001, 68, 2473. (d) Eglen,
R. M.; Nahorski, S. R. Br. J. Pharmacol. 2000, 130, 13.
9. Eglen, R. M.; Choppin, A.; Dillon, M. P.; Hegde, S. Curr.
Opin. Chem. Biol. 1999, 3, 426.
Acknowledgements
We are grateful to Ms. Nami Sakaizumi, Ms. Sachie
Arai-Otsuki, and Ms. Minaho Uchiyama for technical
support and Ms. Jocelyn Winward, Merck & Co., Inc.,
for her assistance in preparation of the manuscript.
References and Notes
1. Kubo, T.; Fukuda, K.; Mikami, A.; Maeda, A.; Takahashi,
H.; Mishina, M.; Haga, T.; Haga, K.; Ichiyama, A.; Kana-
gawa, K.; Kojima, M.; Matsuo, H.; Hirose, T.; Numa, S.
Nature 1986, 323, 411.
10. Sagara, Y.; Sagara, T.; Mase, T.; Kimura, T.; Numazawa,
T.; Fujikawa, T.; Noguchi, K.; Ohtake, N. J. Med. Chem.
2002, 45, 984.
2. Kubo, T.; Maeda, A.; Sugimoto, K.; Akiba, I.; Mikami, A.;
Takahashi, H.; Haga, T.; Haga, K.; Ichiyama, A.; Kanagawa,
K.; Matsuo, H.; Hirose, T.; Numa, S. FEBS Lett. 1986, 209,
367.
3. Peralta, E. G.; Ashkenazi, A.; Winslow, J. W.; Smith,
D. H.; Ramachandran, J.; Capon, D. J. EMBO J. 1987, 6,
3923.
4. Bonner, T. I.; Buckley, N. J.; Young, A. C.; Brann, M. R.
Science 1987, 237, 527.
5. Bonner, T. I.; Young, A. C.; Brann, M. R.; Buckley, N. J.
Neuron 1988, 1, 403.
11. A systematic search was performed on the amino acid
spacer site of 1 and 2a employing the conformational search
functionality of SYBYL. (SYBYL Molecular Modeling Pack-
age, version 6.8; Tripos, Inc., St. Louis, MO, USA). Incre-
ments of bond rotation were set to 30, 10 and 180ꢀ for all
rotatable single bonds, ring bonds and an amide bond,
respectively, and the van der Waals bump coefficient was set at
0.95 to eliminate unfeasible conformations suffered from van
der Waals repulsion. The number of predicted conformers
were 97,410 and 64 for 1 and 2a, respectively.
12. Hirose, H.; Aoki, I.; Kimura, T.; Fujikawa, T.; Numa-
zawa, T.; Sasaki, K.; Sato, A.; Hasegawa, T.; Nishikibe, M.;
Mitsuya, M.; Ohtake, N.; Mase, T.; Noguchi, K. J. Pharma-
col. Exp. Ther. 2001, 297, 790.
6. Hulme, E. C.; Birdsall, N. J. M.; Buckley, N. J. Ann. Rev.
Pharmacol. Toxicol. 1990, 30, 633.
7. Caulfield, M. P. Pharmacol. Ther. 1993, 58, 319.