2976
R. N. Misra et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2973–2977
a
Table 4. CDK inhibitory and anticancer activity of N-aryl aminothiazoles
b
Compd
CDK1/cycBIC50
nM
,
CDK2/cycEIC50
nM
,
CDK4/cycDIC50
nM
,
A2780 CytotoxIC50
nM
,
% Protein binding
P388 %T/C
1
2
9
3
18
10
3
2
26
233
3
69
90
97
156 @ 4 mg/kg
180 @ 90 mg/kg
a
See Ref. 5b for description of biological assays.
Determined by equilibrium dialysis in mouse serum.
b
significant factor in the lack of anticancer activity for
this agent. Following a strategy employed for the N-acyl
aminothiazoles we sought to introduce polar functional
groups into the molecule as a method of both increasing
Acknowledgements
We thank Dr. Bang-Chi Chen, Mr. Rulin Zhao, and
Mr. Mark S. Bednarz for preparation of chemical
intermediates and Ms. Ming Chang for serum protein
binding data. We also thank Dr. John T. Hunt for sci-
entific guidance.
5
solubility and exposure of free drug. Modeling and
crystallographic studies (see above) had indicated that
substituents para to the amino group on the aryl ring
would be directed toward the exterior of the protein and
thus should be compatible with maintaining CDK
inhibitory activity. Based, in part, on modeling experi-
ments compounds 19 and 23 with basic amine and
alcohol side chains, respectively, were prepared and
found to mirror the in vitro CDK inhibitory activity of
their unsubstituted counterparts 6 and 7 (see Table 4).
Analysis indicated serum protein binding at 90% and
References and notes
1. (a) Hunter, T.; Pines, J. Cell 1994, 79, 573; (b) Sherr, C.
Science 1996, 274, 1672; Review: (c) Pines, J. Seminars
Cancer Biol. 1994, 5, 305.
. (a) Webster, K. R. Exp. Opin. Invest. Drugs 1998, 7, 1; (b)
Webster, K. R.; Kimball, S. D. Emerging Drugs 2000, 5,
2
9
7% for 19 and 23, respectively. Examination in the
4
5; (c) Kimball, S. D.; Webster, K. R. Annu. Rpt. Med.
Chem. 2001, 36, 139; (d) Sausville, E. A. Trends Mol. Med.
002, 8(4, Suppl.), S32; (e) Huwe, A.; Mazitschek, R.;
Giannis, A. Angew. Chem., Int. Ed. 2003, 42, 2122.
P388 model showed that in contrast to 9, both 19 and 23
were effective in significantly increasing lifespan.
Administered at their MTD 2-pyridyl analogue 19
increased lifespan by 56% while 2-phenyl analogue 23
increased lifespan by 80%.
2
3. (a) Vesely, J.; Havlicek, L.; Strnad, M.; Blow, J.; Donella-
Deana, A.; Pinna, L.; Letham, D. S.; Kato, J.; Detivaud,
L.; Leclerc, S.; Meijer, L. Eur. J. Biochem. 1994, 224, 771;
(
b) Abraham, R.; Acquarone, M.; Andersen, A.; Asensi,
In summary, N-aryl aminothiazoles 6–9 were prepared
and found to be inhibitors in vitro of CDK1, CDK2,
and CDK4. In cells they acted as potent cytotoxic
agents. Selectivity for CDK1, CDK2, and CDK4 was
dependent on the nature of the N-aryl group and was
distinct from the CDK2 selective N-acyl analogues. The
N-2-pyridyl analogues 7 and 19 exhibited a pan-like
CDK inhibitory profile. Analogues 19 and 23 with polar
substituents on the aryl ring afforded inhibitors that
were also efficacious in vivo as anticancer agents. For
example, 19 (BMS-357075) was a potent inhibitor of
CDK1, CDK2, and CDK4 and produced a 56%
increase in survival time versus untreated control against
P388 murine leukemia in mice (Fig. 2).
A.; Belle, R.; Berger, F.; Bergounioux, C.; Brun, G.;
Buquet-Fagot, C.; Fagot, D.; Glab, N.; Goudeau, H.;
Goudeau, M.; Guerrier, P.; Houghton, P.; Hendriks, H.;
Kloareg, B.; Lippai, M.; Marie, D.; Maro, B.; Meijer, L.;
Mester, J.; Mulner-Lorillon, O.; Poulet, S.; Schierenberg,
E.; Schutte, B.; Vaulot, D.; Verlhac, M. Biol. Cell 1995, 83,
1
05; (c) Havlicek, L.; Hanus, J.; Vesely, J.; Leclerc, S.;
Meijer, L.; Shaw, G.; Strand, M. J. Med. Chem. 1997, 40, 408.
4. (a) Kaur, G.; Stetler-Stevenson, M.; Sebers, S.; Worland,
P.; Sedlacek, H.; Myers, C.; Czeck, J.; Naik, R.; Sausville,
E. J. Nat. Cancer Inst. 1992, 84, 1736; (b) Carlson, B.;
Dubay, M. M.; Sausville, E. A.; Brizuela, L.; Worland, P.
J. Cancer Res. 1996, 56, 2973; (c) Sedlacek, H. H.; Czech,
J.; Naik, R.; Kaur, G.; Worland, P.; Losiewicz, M.;
Parker, B.; Carlson, B.; Smith, A.; Senderowicz, A.;
Sausville, E. Int. J. Oncol. 1996, 9, 1143; (d) Senderowicz,
A . M.Invest. New Drugs 1999, 17, 313; (e) Stadler, W. M.;
Vogelzang, J.; Amato, R.; Sosman, J.; Taber, D.; Liebo-
witz, D.; Vokes, E. E. J. Clin. Oncol. 2000, 18, 371;
(f) Zhai, S.; Senderowicz, A. M.; Sausville, E. A.; Figg, W.
D. Ann. Pharmacother. 2002, 36, 905.
. (a) Misra, R. N.; Xiao, H. Y.; Kim, K. S.; Lu, S.; Han,
W. C.; Barbosa, S. A.; Hunt, J. T.; Rawlins, D. B.; Shan,
W.; Ahmed, S. Z.; Qian, L.; Chen, B. C.; Zhao, R.;
Bednarz, M. S.; Kellar, K. A.; Mulheron, J. G.; Barorsky,
R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive,
S. A.; Sack, J. S.; Tokarski, J. S.; Pavletich, N. P.; Lee,
F. Y.; Webster, K. R.; Kimball, S. D. J. Med. Chem.
2004, 47, 1719; (b) Kim, K. S.; Kimball, S. D.; Misra,
R. N.; Rawlins, D. B.; Hunt, J. T.; Xiao, H.-Y.; Lu, S.;
Qian, L.; Han, W.-C.; Shan, W.; Mitt, T.; Cai, Z.-W.;
Poss, M. A.; Zhu, H.; Sack, J. S.; Tokarski, J. S.; Chang,
C.-Y.; Pavletich, N.; Kamath, A.; Humphreys, W. G.;
tBu
O
H
N
S
S
N
N
H
N
5
N
OH
1
9 (BMS-357075)
CDK1/cycB IC = 18 nM
5
0
CDK2/cycE IC50 = 3 nM
CDK4/cycD IC50 = 26 nM
A2780 cytotox IC50 = 3 nM
P388 %T/C= 156
Figure 2. Summary of biological data for aminothiazole pan-CDK
inhibitor 19.