M. Cheng et al. / Tetrahedron: Asymmetry 17 (2006) 179–183
183
0.50, DMSO). IR mmax (KBr) cmꢀ1, 3411, 2805, 2515,
depositing the crystal structure and providing the CIF
and mol2 file of (ꢀ)-linarinic acid.
1743, 1645, 1578, 1521, 1457, 1407, 1335, 1260, 1217,
1
975, 791, 728, 677. H NMR (DMSO-d6, 300 MHz) d
2.03 (1H, m), 2.41 (2H, m), 4.08 (1H, d, J = 8.9 Hz),
4.38 (1H, d, J = 16.8 Hz), 5.01 (1H, d, J = 16.8 Hz),
7.43 (1H, d, J = 7.7 Hz), 7.55 (1H, t, J = 7.6, 7.8 Hz),
7.72 (1H, t, J = 7.5, 7.6 Hz), 8.04 (1H, d, J = 8.1 Hz),
13.00 (1H, s). ESI-MS m/z: 265.1 (M++1).
References
1. Jiangsu College of New Medicine Science. Thesaurus of the
Traditional Chinese Medicines; Shanghai PeopleÕs Press:
Shanghai, 1977; p 1526.
2. Hua, H.; Cheng, M.; Li, X.; Pei, Y. Chem. Pharm. Bull.
(Tokyo) 2002, 50, 1393–1394.
3. Allen, F. H.; Motherwell, W. D. S. Acta Crystallogr., Sect.
B 2002, 58, 407–422.
4. Allen, F. H. Acta Crystallogr., Sect. B 2002, 58, 380–
388.
5. Ruud, K.; Helgaker, T. Chem. Phys. Lett. 2002, 352, 533.
6. Polavarapu, P. L. Mol. Phys. 1997, 91, 551–554.
7. Polavarapu, P. L.; Chakraborty, D. K. J. Am. Chem. Soc.
1998, 120, 6160–6164.
8. Polavarapu, P. L.; Zhao, C. Chem. Phys. Lett. 1998, 296,
105–110.
9. Kondru, R. K.; Wipf, P.; Beratan, D. N. J. Am. Chem.
Soc. 1998, 120, 2204–2205.
10. Kuwada, T.; Fukui, M.; Hata, T.; Choshi, T.; Nobuhiro,
J.; Ono, Y.; Hibino, S. Chem. Pharm. Bull. (Tokyo) 2003,
51, 20–23.
4.2.3. Preparation of (S)-(ꢀ)-linarinic acid 1. To a solu-
tion of 1-(2-nitro-benzyl)-5-oxo-pyrrolidine-2-carbox-
ylic acid 5 (10.00 g, 37.6 mmol) in ethanol (360 mL)
was added active carbon (1.00 g) and a catalytic amount
of ferric chloride (0.95 g, 3.5 mmol). Then the suspen-
sion was heated to 50 ꢁC and hydrazine hydrate
(5.52 mL, 113.5 mmol) was added dropwise. The mix-
ture was heated at reflux for about 64 h. Then the mix-
ture was filtered and the solvent was removed by
vacuum evaporation. The residue was purified by flash
chromatography on silica gel using methanol–ethyl acet-
ate (5:4, v/v) to give a white solid 4.87 g, yield 59.6%;
18
mp 229.9–232.5 ꢁC dec. ½aꢁD ¼ ꢀ290:0 (c 0.01, MeOH).
IR mmax (KBr) cmꢀ1 3420, 2925, 1666, 1602, 1586, 1500,
1
1376, 1292, 771. H NMR (CD3OD, 300 MHz) d 2.22–
2.31 (1H, m), 2.54–2.62 (1H, m), 2.98–3.10 (2H, m), 4.30
(1H, dd, J = 9.3, 4.1 Hz), 4.75 (1H, d, J = 15.4 Hz), 4.96
(1H, d, J = 16.3 Hz), 7.00 (1H, m), 7.17–7.25 (2H, m),
7.28–7.33 (1H, m). 13C NMR (CD3OD, 75 MHz) d
25.56, 30.22, 46.46, 70.17, 117.77, 118.43, 128.09,
128.29, 130.28, 132.34, 165.00, 174.92. ESI-MS m/z:
217.0 (M++1), 215.0 (M+ꢀ1). EI-MS m/z: 216 (59.47),
215 (62.09), 171 (41.22), 169 (46.73), 145 (11.58), 144
(100.00), 129 (7.91), 118 (26.71), 91 (9.34), 77 (19.57),
51 (17.81), 39 (17.30).
11. Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P.
J. J. Phys. Chem. 2000, 104, 1039–1046.
12. Dalton, a molecular electronic structure program, Release
2.0, 2005.
13. London, F. J. Phys. Radium 1937, 8, 397.
14. Ruud, K.; Helgaker, T.; Kobayashi, R.; Jørgensen, P.;
Bak, K. L.; Jensen, H. J. A. J. Chem. Phys. 1994, 100,
8187.
15. Ruud, K.; Helgaker, T.; Bak, K. L.; Jørgensen, P.; Jensen,
H. J. A. J. Chem. Phys. 1993, 99, 3847.
16. Bak, K. L.; Jørgensen, P.; Helgaker, T.; Ruud, K.; Jensen,
H. J. A. J. Chem. Phys. 1993, 98, 8873.
17. He, J. T.; Polavarapu, P. L. J. Chem. Theory Comput.
2005, 1, 506–514.
18. Helgaker, T.; Ruud, K.; Bak, K. L.; Jørgensen, P.; Olsen,
J. Faraday Discuss. 1994, 99, 165–180.
Acknowledgments
We thank Peter R. Taylor at Centre for Scientific Com-
puting, University of Warwick, United Kingdom for
discussion and help with the theoretical calculation of
the specific rotation. We also thank Gill Heale at Cam-
bridge Crystallographic Data Centre for her help of
19. Szemes, F.; Marchalin, S.; Bar, N.; Decroix, B. J.
Heterocycl. Chem. 1998, 35, 1371–1375.
20. Antonio, L.; Domenico, S. Synthesis 1977, 10, 720–721.
21. SYBYL 6.91, Tripos, 1699 South Hanley Road, St. Louis,
MO 63144, USA.