Scheme 2 Proposed epoxidation pathway.6b,7c
Fe(V)(OH)2 in excess HOAc, and agrees with exclusive formation
of epoxides rather than diols,5b,c,6b–d which was now observed in
catalytic oxidations with 1/H2O2/HOAc.
In conclusion, we have discovered a new iron catalyst of
very high selectivity and efficiency in epoxidation of aliphatic
olefins with hydrogen peroxide; no diol formation was observed.
The epoxide yield strongly depends on the amount of HOAc in
the reaction mixture. Acid-promoted O–O bond cleavage in
the observed Fe(III)–OOH intermediate generates an electro-
philic metal-based oxidant.
Fig. 2 Epoxide TON (Table 1) depends on the amount of HOAc
added (with respect to 1; logarithmic scale). Olefin (200 mmol), 1
(0.2 mmol), H2O2 (300 mmol, 30% aqueous solution), 25 1C, 10 min.
HOAc is explained by the decomposition of complex 1 and the
formation of less active binuclear carboxylato-bridged iron(III)
compounds, and by a possible competing catalase reaction.
Control experiments with iron(II) salts in place of complex 1
did not yield epoxide products.
This work was supported by the US Department of Energy
(DE-FG02-06ER15799); instrumentation was supported by
the NSF (CHE-9723772, 0639138, and MRI CHE 0821508).
Stopped-flow studies of the direct reaction between 1 and H2O2
identified a short-lived intermediate with lmax = 560 nm (Fig. 3).
The optical spectrum of this intermediate is similar to the spectra
of known mononuclear FeIII(OOH) complexes that typically have
an intense band at B500–550 nm. The EPR spectrum of the
frozen sample prepared by manual rapid mixing of 1 and a 10-fold
excess H2O2 (g = 2.185, 1.98, and 1.955) is also very similar to the
spectra of known LS iron(III) hydroperoxides10 and confirms that
FeIII(OOH) is present in the reaction mixture. By analogy
with reaction mechanisms proposed for related systems,6b,7c
HOAc-assisted O–O bond heterolysis would generate a reactive
electrophilic intermediate, Fe(V) = O(OAc), that transfers a single
oxygen atom to olefins, generating epoxide (Scheme 2). Isotope
labeling experiments showed the lack of incorporation of 18O
from water in epoxidations of 1-decene and cyclooctene with
1/H2O2/HOAc, and incorporation of oxygen from H218O2 into
epoxide products (see ESIw for details). Slow exchange of
metal-based oxidant with water implies low accumulation of
Notes and references
1 (a) C. M. White, A. G. Doyle and E. N. Jacobsen, J. Am. Chem.
Soc., 2001, 123, 7194–7195; (b) I. Garcia-Bosch, A. Company,
X. Fontrodona, X. Ribas and M. Costas, Org. Lett., 2008, 10(11),
2095–2098; (c) M. B. Andrus and B. W. Poehlein, Tetrahedron Lett.,
2000, 41, 1013–1014; (d) M. Dakkach, M. I. Lo
M. Rodrıguez, A. Atlamsani, T. Parella, X. Fontrodona and
´
pez, I. Romero,
´
A. Llobet, Inorg. Chem., 2010, 49, 7072–7079; (e) M. Abrantes,
T. R. Amarante, M. M. Antunes, S. Gago, F. A. A. Paz,
I. Margiolaki, A. E. Rodrigues, M. Pillinger, A. A. Valente and
I. S. Gonc¸ alves, Inorg. Chem., 2010, 49, 6865–6873.
2 (a) S. Friedle, E. Reisner and S. J. Lippard, Chem. Soc. Rev., 2010, 39,
2768–2779; (b) L. J. Murray and S. J. Lippard, Acc. Chem. Res., 2007,
40, 466–474; (c) S. M. Hecht, Acc. Chem. Res., 1986, 19, 383–391;
(d) J. Chen and J. Stubbe, Curr. Opin. Chem. Biol., 2004, 8, 175–181.
3 (a) C. Walling, Acc. Chem. Res., 1998, 31, 155; (b) H. J. H. Fenton,
J. Chem. Soc., 1894, 65, 889–910.
4 (a) S. Enthaler, K. Junge and M. Beller, Angew. Chem., Int. Ed.,
2008, 47, 3317–3321; (b) A. Correa, O. G. Mancheno and C. Bolm,
Chem. Soc. Rev., 2008, 37, 1108–1117; (c) L. J. Que and
W. B. Tolman, Nature, 2008, 455, 333–340; (d) P. D. Oldenburg
and L. J. Que, Catal. Today, 2006, 117, 15–21.
5 (a) S. Taktak, W. Ye, A. M. Herrera and E. V. Rybak-Akimova,
Inorg. Chem., 2007, 46(7), 2929–2942; (b) K. Chen and L. Que Jr.,
Chem. Commun., 1999, 1375–1376; (c) C. Duboc-Toia, S. Menage,
C. Lambeaux and M. Fontecave, Tetrahedron Lett., 1997, 38,
3727–3730; (d) T. K. Paine, M. Costas, J. Kaizer and L. J. Que,
JBIC, J. Biol. Inorg. Chem., 2006, 11, 272–276; (e) Y. M. Chiou
and L. J. Que, J. Am. Chem. Soc., 1992, 114(19), 7567–7568.
6 (a) S. Taktak, S. V. Kryatov, T. E. Haas and E. V. Rybak-Akimova,
J. Mol. Catal. A: Chem., 2006, 259, 24–34; (b) R. Mas-Balleste
L. Que Jr., J. Am. Chem. Soc., 2007, 129, 15964–15972;
(c) L. Gomez, X. Fontrodona, X. Ribas and M. Costas,
Chem.–Eur. J., 2008, 14, 5727–5731; (d) A. Company, Y. Feng,
´
and
´
M. Guell, X. Ribas, J. M. Luis, L. Que Jr. and M. Costas,
¨
Chem.–Eur. J., 2009, 15, 3359–3362.
7 (a) M. S. Chen and M. C. White, Science, 2007, 318, 783–787;
(b) K. Suzuki, P. D. Oldenburg and L. Que Jr., Angew. Chem., Int.
Ed., 2008, 47(10), 1887–1889; (c) O. V. Makhlynets and E. V. Rybak-
Akimova, Chem.–Eur. J., 2010, 16, 13995–14006; (d) O. V. Makhlynets,
Fig. 3 Time-resolved UV-vis spectra of the FeIII(OOH) formation at
27 1C in acetonitrile ([1] = 1 mM, [H2O2] = 30 mM). Maximum
accumulation of FeIII(OOH) was seen in 2 s after mixing reagents (red-
spectrum of 1, purple-spectrum of FeIII(OOH)). Inset: EPR spectrum
(120 K) of the FeIIIOOH, generated by mixing 1 and H2O2 in
acetonitrile at 0 1C and freezing in B7 s after reagents were mixed
([1] = 5 mM, [H2O2] = 50 mM after mixing). Spectrum simulated
with SimFonia with g values 2.185, 1.98, and 1.955. Another low-spin
species (g = 2.40, 2.17, 1.90) most likely results from FeII - FeIII
oxidation without OOH coordination.
P. Das, S. Taktak, M. Flook, R. Mas-Balleste, E. V. Rybak-Akimova
´
and L. Que Jr., Chem.–Eur. J., 2009, 15(47), 13171–13180.
8 (a) C. R. Smith, J. Am. Chem. Soc., 1928, 50, 1936–1938;
(b) G. Lunn and E. B. Sansone, J. Org. Chem., 1986, 51, 513–517.
9 J. Grimshaw, Electrochemical reactions and mechanisms in organic
chemistry, Elsevier Science B.V., 2000.
10 (a) J.-J. Girerd, F. Banse and A. J. Simaan, Struct. Bonding, 2000,
97, 145; Y. Jiang, J. Telser and D. P. Goldberg, Chem. Commun.,
2009, 6828–6830.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 687–689 689