Organometallics
Article
K2CO3 (2.80 g, 20.4 mmol) and 4-bromo-1-butene (1.00 g, 7.50
mmol) were added, the solution was stirred at 60 °C under a N2
atmosphere. After 1 h, 4-bromo-1-butene was further added (0.50 g,
3.75 mmol) and the solution was stirred at 60 °C for 30 min. The
solution was cooled to room temperature, and water (50 mL) was
added before extraction with ether (three times). The ether phases
were combined and dried over Na2SO4. The solvent was evaporated,
and the red residue was subjected to silica gel column chromatography
with hexane/AcOEt = 2/1 as eluent to give compound 11 as a pale
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Science
Research on Innovative Areas (Molecular Activation Directed
toward Straightforward Synthesis, MEXT Japan) and “The
Green Photonics Project” (NAIST, Japan). We thank Ms.
Yuriko Nishiyama and Ms. Yoshiko Nishikawa for mass
analyses and Mr. Leigh McDowell for kind advice in the
preparation of the manuscript.
1
yellow oil (1.74 g, 87% yield). H NMR (CDCl3, 400 MHz): δ 8.05
(d, J = 6.8 Hz, 1H, 3-Ph), 7.72−7.62 (m, 3H, 4-Ph, 5-Ph, and 6-Ph),
5.70 (m, 2H, −CHCH2 × 2), 5.21 (m, 2H, −NCH2CHCH2),
5.02 (m, 2H, −NCH2CH2CHCH2), 3.96 (d, 2H, J = 7.0 Hz,
−-NCH2CHCH2), 3.36 (dd, J = 7.5 Hz, 7.5 Hz, 2H,
−NCH2CH2CHCH2), 2.29 (dd, J = 7.5 Hz, 7.5 Hz, 2H,
−NCH2CH2CHCH2). 13C NMR (D2O, 100 MHz): δ 135.6,
130.0, 126.4, 121.6, 52.1, 48.5, 32.7. EI-HR-MS (positive mode): calcd
112.1121 for C7H14N ([M − Cl]+), found 112.1133.
REFERENCES
■
(1) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18−29.
(b) Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003.
(c) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243−251.
(d) Furstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012−3043.
̈
(2) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2000, 122, 8168−8179. (b) Connon, S. J.; Rivard, M.;
Zaja, M.; Blechert, S. Adv. Synth. Catal. 2003, 345, 572−575.
(c) Vehlow, K.; Gessler, S.; Blechert, S. Angew. Chem., Int. Ed. 2007,
46, 8082−8085. (d) Grela, K.; Harutyunyan, S.; Michrowska, A.
Angew. Chem., Int. Ed. 2002, 41, 4038−4040. (e) Michrowska, A.;
Gułajski, Ł.; Kaczmarska, Z.; Mennecke, K.; Kirschning, A.; Grela, K.
Green. Chem. 2006, 8, 685−688. (f) Gułajski, Ł.; Michrowska, A.;
In a 100 mL two-neck flask equipped with a condenser, p-
toluenethiol (1.83 g, 14.8 mmol) was dissolved in MeCN (5 mL) and
cooled with an ice bath. To the solution was added 11 M aqueous
KOH (1.4 mL) over 10 min, and the solution was stirred for 5 min.
Compound 11 (1.74 g, 5.9 mmol) in MeCN (5 mL) was slowly added
to the aforementioned solution over 20 min before the solution was
stirred at 50 °C for 1 h. After the disappearance of 11 was confirmed
by TLC, aqueous HCl (1 M) was added to extract the deprotected
amine. The water phase was brought out to pH 12 by adding aqueous
KOH. The amine was extracted with CH2Cl2 three times to remove
excess p-toluenethiol, and the organic phase was dried over Na2SO4.
After filtration, the solution was cooled with an ice bath. To the
solution was added di-tert-butyl dicarbonate (1.54 g, 7.10 mmol). The
reaction mixture was stirred at room temperature for 1 h, washed with
water, and dried over Na2SO4. The solvent was evaporated to yield a
colorless oil. The oil was dissolved in 4 M HCl in dioxane, and the
solution was stirred at room temperature for 18 h. After the solvent
was evaporated, the residue was triturated with ether to yield a white
solid. The solid was collected by suction, rinsed with ether, and dried
in vacuo. Compound 6 (0.540 g) was obtained in a yield of 62% in
Naroznik, J.; Kaczmarska, Z.; Rupnicki, L.; Grela, K. ChemSusChem
̇
2008, 1, 103−109. (g) Binder, J. B.; Guzei, I. A.; Raines, R. T. Adv.
Synth. Catal. 2007, 349, 395−404.
(3) (a) Grela, K.; Gułajski, Ł.; Skowerski, K. Alkene Metathesis in
Water. In Metal-Catalyzed Reactions in Water; Dixneuf, P. H.,
Cadierno, V., Eds.; Wiley-VCH: Weinheim, Germany, 2013; pp
291−336. (b) Binder, J. B.; Blank, J. J.; Raines, R. T. Org. Lett. 2007, 9,
4885−4888.
(4) (a) Hong, S.-H.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128,
3508−3509. (b) Gallivan, J. P.; Jordan, J. P.; Grubbs, R. H.
Tetrahedron Lett. 2005, 46, 2577−2580.
(5) (a) Lynn, D. M.; Kanaoka, S.; Grubbs, R. H. J. Am. Chem. Soc.
1996, 118, 784−790. (b) Lynn, D. M.; Mohr, B.; Grubbs, R. H. J. Am.
Chem. Soc. 1998, 120, 1627−1628. (c) Kirkland, T. A.; Lynn, D. M.;
Grubbs, R. H. J. Org. Chem. 1998, 63, 9904−9909. (d) Jordan, J. P.;
Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 5152−5155.
(e) Connon, S. J.; Blechert, S. Bioorg. Med. Chem. Lett. 2002, 12,
1873−1876.
(6) (a) Lin, Y. A.; Chalker, J. M.; Davis, B. G. J. Am. Chem. Soc. 2010,
132, 16805−16811. (b) Lin, Y. A.; Chalker, J. M.; Floyd, N.;
Bernardes, G. J. L.; Davis, B. G. J. Am. Chem. Soc. 2008, 130, 9642−
9643. (c) Chalker, J. M.; Lin, Y. A.; Boutureira, O.; Davis, B. G. Chem.
Commun. 2009, 3714−3716. (d) Cochrane, S. A.; Huang, Z.; Vederas,
J. C. Org. Biomol. Chem. 2013, 11, 630−639. (e) Binder, J. B.; Raines,
R. T. Curr. Opin. Chem. Biol. 2008, 12, 767−773.
(7) (a) Mayer, C.; Gillingham, D. G.; Ward, T. R.; Hilvert, D. Chem.
Commun. 2011, 47, 12067−12068. (b) Lo, C.; Ringenberg, M. R.;
Gnandt, D.; Wilson, Y.; Ward, T. R. Chem. Commun. 2011, 47,
12065−12067. (c) Matsuo, T.; Imai, C.; Yoshida, T.; Saito, T.;
Hayashi, T.; Hirota, S. Chem. Commun. 2012, 48, 1662−1664.
(d) Philippart, F.; Arlt, M.; Gotzen, S.; Tenne, S.-J.; Bocola, M.; Chen,
H.-H.; Zhu, L.; Schwaneberg, U.; Okuda, J. Chem. Eur. J. 2013,
DOI: 10.1002/chem.201301515.
(8) Michrowska, A.; Grela, K. Pure Appl. Chem. 2008, 80, 31−43.
(9) (a) Banti, D.; Mol, J. C. J. Organomet. Chem. 2004, 689, 3113−
3116. (b) Dinger, M. B.; Mol, J. C. Eur. J. Inorg. Chem. 2003, 2827−
2833.
(10) (a) Straub, B. F. Adv. Synth. Catal. 2007, 349, 204−214.
(b) Falivene, L.; Poater, A.; Cazin, C. S. J.; Slugovc, C.; Cavallo, L.
DaltonTrans 2013, 42, 7312−7317. (c) Straub, B. F. Angew. Chem., Int.
Ed. 2005, 44, 5974−5978.
(11) (a) Krause, J. O.; Nuyken, O.; Wurst, K.; Buchmeiser, M. R.
Chem. Eur. J. 2004, 10, 777−784. (b) Wappel, J.; Urbina-Blanco, C. A.;
Abbas, M.; Albering, J. H.; Saf, R.; Nolan, S. P.; Slugovc, C. Beilstein J.
Org. Chem. 2010, 6, 1091−1098. (c) Zirngast, M.; Pump, E.; Leitgeb,
A.; Albering, J. H.; Slugovc, C. Chem.Commun. 2011, 47, 2261−2263.
1
three steps from 12. H NMR (D2O, 400 MHz): δ 5.90 (m, 1H,
−NCH2CHCH2), 5.81 (m, 1H, −NCH2CH2CHCH2), 5.49 (m,
2H, −NCH2CHCH2), 5.22 (m, 2H, −NCH2CH2CHCH2), 3.66
(d, 2H, J = 6.8 Hz, −NCH2CHCH2), 3.14 (t, 2H, J = 7.1 Hz,
−NCH2CH2CHCH2), 2.46 (td, 2H, J = 7.1 Hz, 6.9 Hz,
−NCH2CH2CHCH2). 13C NMR (D2O, 100 MHz): δ 135.6,
130.0, 126.4, 121.6, 52.1, 48.5, 32.7. EI-HR-MS (positive mode): calcd
112.1121 for C7H14N ([M − Cl]+), found 112.1133. Anal. Calcd for
C7H14NCl: C, 56.94; H, 9.56; N, 9.49. Found: C, 56.76; H, 9.48; N,
9.52.
Spectroscopic Data of RCM Product from 6 (6-RCM). 1H
NMR (D2O, 400 MHz): δ 5.99 (m, 1H, −NCH2CH2CHCHCH2N-
), 5.77 (m, 1H, −NCH2CH2CHCHCH2N-), 3.68 (dt, 2H, J = 2.6
Hz, 5.5 Hz, −CHCHCH2N−), 3.34 (t, 2H, J = 6.3 Hz,
−NCH2CH2CHCH−), 2.40 (m, 2H, −NCH2CH2CHCH−).
13C NMR (D2O, 100 MHz): δ 128.3, 122.3, 44.4, 43.4, 23.8.
ASSOCIATED CONTENT
* Supporting Information
■
S
Figures giving NMR data of substrates and authentic samples of
products, 1H NMR spectra of reaction mixtures, UV−vis
spectra, and ESI-TOF-MS spectral data. This material is
AUTHOR INFORMATION
Corresponding Author
*T.M.: tel, +81-743-72-6112; fax, +81-743-6119; e-mail,
■
Notes
The authors declare no competing financial interest.
F
dx.doi.org/10.1021/om4005302 | Organometallics XXXX, XXX, XXX−XXX