3036
S. Han et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3033–3036
13. Thompson, A. J.; Jackson, A. C.; Parker, R. A.; Morpeth,
D. R.; Burbidge, A.; Taylor, I. B. Plant Mol. Biol. 2000,
42, 833–845.
14. Moreno-Fonseca, L. P.; Covarrubias, A. A. Plant Mol.
Biol. 2001, 45, 501–515.
15. Ullah, H.; Chen, J.-G.; Wang, S.; Jones, A. M. Plant
Physiol. 2002, 129, 897–907.
16. Gamble, P. E.; Mullet, J. Eur. J. Biochem. 1986, 160, 117–
121.
Eventually we found that 20 should be an ABA bio-
synthesis inhibitor. On the basis of this study, it can be
estimated that the essential structures required for
NCED inhibitory activity of this chemical group should
be an amine moiety, which is substituted with phen-
ylalkyl group, phenylalkenyl group, and carbo-
alkoxyalkyl group. As there still remains a lot of room
for structural modification of this chemical group, the
further study on structure–activity relationships will
lead us to find more potent and specific NCED inhibi-
tors. The result thus obtained will play an important
role for designing new inhibitors. Recently ‘chemical
genetics’ has been used as a new tool for dissecting and
understanding biological systems in plants.37;38 Devel-
opment of chemicals that induce phenotypes of interest
is now emerging as a useful way to study biological
systems in plants and this would be a complement to
classical biochemical and genetic methods. In this con-
text ABA biosynthesis inhibitor could be a new player in
this field.
17. Yoshioka, T.; Endo, T.; Satoh, S. Plant Cell Physiol. 1998,
39, 307–312.
18. Britton, G. In Carotenoids; Britton, G., Liaaen-Jensen, S,
Pfander, H., Eds.; Birkhauser: Austin, 1998; pp 117–121.
19. Asami, T.; Yoshida, S. Trends Plant Sci. 1999, 4, 348–353.
20. Asami, T.; Min, Y. K.; Fujioka, S.; Takatsuto, S.; Nagata,
N.; Yamagishi, K.; Murofushi, N.; Yamaguchi, I.; Yosh-
ida, S. Plant Physiol. 2000, 123, 93–100.
21. Nagata, N.; Min, Y. K.; Nakano, T.; Asami, T.; Yoshida,
S. Planta 2000, 211, 781–790.
22. Nagata, N.; Asami, T.; Yoshida, S. Plant Cell Physiol.
2001, 42, 1017–1023.
23. Burbidge, A.; Grieve, T.; Jackson, A.; Thompson, A.;
Taylor, I. J. Exp. Bot. 1997, 48, 2111–2112.
24. Iuchi, S.; Kobayashi, M.; Taji, T.; Naramoto, M.; Seki,
M.; Kato, T.; Tabata, S.; Kakubari, Y.; Yamaguchi-
Shinozaki, K.; Shinozaki, K. Plant J. 2001, 27, 325–333.
25. Creelman, R. A.; Bell, E.; Mullet, J. E. Plant Physiol.
1992, 99, 1258–1260.
26. Iuchi, S.; Kobayashi, M.; Yamaguchi-Shinozaki, K.;
Shinozaki, K. Plant Physiol. 2000, 123, 553–562.
27. Kemal, C.; Louis-Flamberg, P.; Krupinski-Olsen, R.;
Shorter, A. L. Biochemistry 1987, 26, 7064–7072.
28. Merigout, P.; Kepes, F.; Perret, A.-M.; Satiat-Jeunemai-
tre, B.; Moreau, P. FEBS Lett. 2002, 518, 88–92.
29. Whitman, S.; Gezginci, M.; Timmermann, B. N.; Holman,
T. R. J. Med. Chem. 2002, 45, 2659–2661.
Acknowledgements
We thank Mrs. M. Kobayashi and A. Hanada (RIKEN,
Plant Science Center) for helpful technical assistance in
the ABA measurements. This research was supported in
part by the Bioarchitect Research Program at RIKEN,
funded by the Science and Technology Agency of Japan.
References and notes
1. Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular Res-
ponses to Cold, Drought, Heat and Salt Stress in Higher
Plants; R.G. Landes Company: Basel, 1999.
2. Zhu, J. K. Trends Plant Sci. 2001, 6, 66–71.
3. Finkelstein, R. R.; Gampala, S. S. L.; Rock, C. D. Plant
Cell 2002, S15–S45.
30. Soai, K.; Yokoyama, S.; Mochida, K. Synthesis 1987,
647–648.
31. Shishido, K.; Yamashita, A.; Hiroya, K.; Fukumoto, K.
J. Chem. Soc., Perkin Trans. 1 1990, 469–475.
32. Cushman, M.; He, H.-M.; Lin, C. M.; Hamel, E. J. Med.
Chem. 1993, 36, 2817–2821.
4. Zeevaart, J. A. D. Plant Physiol. 1980, 66, 672–678.
5. Zeevaart, J. A. D.; Creelman, R. A. Annu. Rev. Plant
Physiol. Plant Mol. Biol. 1988, 39, 439–473.
6. Parry, A. D.; Babiano, M. J.; Horgan, R. Planta 1990,
182, 118–128.
7. Li, Y.; Walton, D. C. Plant Physiol. 1990, 92, 551–559.
8. Schwartz, S. H.; Tan, B. C.; Gage, D. A.; Zeevaart, J. A.
D.; McCarty, D. R. Science 1997, 276, 1872–1874.
9. Tan, B. C.; Schwartz, S. H.; Zeevaart, J. A. D.; McCarty,
D. R. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 12235–
12240.
33. Tanaka, N.; Tamai, T.; Mukaiyama, H.; Hirabayashi, A.;
Muranaka, H.; Akahane, S.; Miyata, H.; Akahane, M.
J. Med. Chem. 2001, 44, 1436–1445.
34. Uno, Y.; Furihata, T.; Abe, H.; Yoshida, R.; Shinozaki,
K.; Yamaguchi-Shinozaki, K. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 11632–11637.
35. Creelman, R. A.; Zeevaart, J. A. D. Plant Physiol. 1985,
77, 25–28.
36. Asami, T.; Sekimata, K.; Wang, J. M.; Yoneyama, K.;
Takeuchi, Y.; Yoshida, S. J. Chem. Res. (S) 1999, 658–
659.
10. Qin, X.; Zeevaart, J. A. D. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 15354–15361.
11. Bray, E. A. Plant Cell Environ. 2002, 25, 153–161.
12. Grappin, P.; Bouinot, D.; Sotta, B.; Miginiac, E.; Jullien,
M. Planta 2000, 210, 279–285.
37. Asami, T.; Nakano, T.; Nakashita, H.; Sekimata, K.;
Shimada, Y.; Yoshida, S. J. Plant Growth Regul. 2003, 22,
336–349.
38. Blackwell, H. E.; Zhao, Y. Plant Physiol. 2003, 133, 448–
455.