L. V. R. Reddy et al. / Tetrahedron Letters 47 (2006) 1753–1756
1755
4. For rearrangement of epoxides to allylic alcohols, see
the review: synthetically useful reactions of epoxides
(a) Smith, J. G. Synthesis 1984, 629–656; (b) Aspinall,
G. O.; Carpenter, R. C.; Khondo, L. Carbohydr. Res.
1987, 165, 281–298; (c) Bernotas, R. C.; Pezzone, M. A.;
Ganem, B. Carbohydr. Res. 1987, 167, 305–311; (d)
Bernotas, R. C. Tetrahedron Lett. 1990, 31, 469–472;
(e) Yadav, J. S.; Shekharam, T.; Gadgil, V. R. J. Chem.
Soc., Chem. Commun. 1990, 843–844; (f) Pearson, W. H.;
Hines, J. V. Tetrahedron Lett. 1991, 32, 5513–5516;
(g) Sarandeses, L. A.; Mourino, A.; Luche, J. L. J. Chem.
Soc., Chem. Commun. 1991, 818–820; (h) Krosley, K. W.;
Gleicher, G. J.; Clapp, G. E. J. Org. Chem. 1992, 57,
840–844; (i) Murphy, J. A.; Patterson, C. W. Tetra-
hedron Lett. 1993, 34, 867–868; (j) Hasegawa, E.; Taka-
hashi, M.; Horaguchi, T. Tetrahedron Lett. 1995, 36,
5215–5218.
Finally, the whole process was also repeated using stereo-
chemically pure epoxy alcohol 1f (de >99%), prepared
by Sharpless epoxidation18 of its allylic alcohol in the
presence of L-(+)-DET. The stereochemically pure 2,3-
epoxy alcohol 1f, on iodination gave the epoxy iodide
2f in 50% yield. This on further reduction with commer-
cial zinc dust gave the diastereomerically pure terminal
alkenic alcohol 3f19 in 86% yield. The structures of all
new compounds synthesized were in accordance with
their spectral data.
H
H
H
BnO
BnO
BnO
I
OH
BnO
BnO
BnO
O
O
OH
2f
OH OH
OH
1f
5. (a) Park, H. S.; Chung, S. H.; Kim, Y. H. Synlett 1998,
1073–1074; (b) Ranu, B. C.; Banerjee, S.; Das, A.
Tetrahedron Lett. 2004, 45, 8579–8581.
3f
6. (a) Pathak, R.; Shaw, A. K.; Bhaduri, A. P.; Chandra-
sekhar, K. V. G.; Srivastava, A.; Srivastava, K. K.;
Chaturvedi, V.; Srivastava, R.; Srivastava, B. S.; Arora,
S.; Sinha, S. Bioorg. Med. Chem. 2002, 10, 1695–1702; (b)
Pathak, R.; Pant, C. S.; Shaw, A. K.; Bhaduri, A. P.;
Gaikward, A. N.; Sinha, S.; Srivastava, A.; Srivastava, K.
K.; Chaturvedi, V.; Srivastava, R.; Srivastava, B. S.
Bioorg. Med. Chem. 2002, 10, 3187–3196.
In summary, zinc dust can be used for reductive opening
of sugar derived 2,3-epoxy-1-iodides, without any acti-
vation/external iodide source, to furnish highly func-
tionalized acyclic long chain terminal alkenic alcohols.
Acknowledgements
7. Sagar, R. Ph.D. Dissertation, Dr. B. R. Ambedkar
University, 2005.
We are thankful to the Sophisticated Analytical Instru-
ment Facility (SAIF) CDRI, for providing spectral data
and Mr. Anup Kishore Pandey, for technical assistance.
L.V.R.R. is grateful to CSIR and R.S. to DOD, New
Delhi, for financial assistance.
8. (a) Gonzalez, F.; Lesage, S.; Perlin, A. S. Carbohydr. Res.
1975, 42, 267–274; (b) Sagar, R.; Pathak, R.; Shaw, A. K.
Carbohydr. Res. 2004, 339, 2031–2035; (c) Hirata, N.;
Yamagiwa, Y.; Kamikawa, T. J. Chem. Soc., Perkin
Trans. 1 1991, 2279–2280.
9. (a) Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Perkin
Trans. 1 1980, 2866–2869; (b) Classon, B.; Liu, Z. J. Org.
Chem. 1988, 53, 6126–6130.
10. Kobalka, G. W.; Yao, M. L. J. Org. Chem. 2004, 69,
8280–8286.
Supplementary data
Supplementary data associated with this article can be
11. Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990–
2016.
12. Fuerstner, A.; Jumbam, D.; Teslic, J.; Weidmann, H. J.
Org. Chem. 1991, 56, 2213–2217.
13. (a) Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62,
2400–2411; (b) Ferrier, R. J.; Furneaux, R. H.; Prasit, P.;
Tyler, P. C.; Brown, K. L.; Gainsford, G. J.; Diehl, J. W.
J. Chem. Soc., Perkin Trans. 1 1983, 1621–1628; (c)
Ferrier, R. J.; Prasit, P. J. Chem. Soc., Perkin Trans. 1
1983, 1645–1647; (d) Beau, J. M.; Aburaki, S.; Pougny, J.
R.; Sinay, P. J. Am. Chem. Soc. 1983, 105, 621–622; (e)
Aspinall, G. O.; Chatterjee, D.; Khondo, L. Can. J. Chem.
1984, 62, 2728–2735; (f) Ferrier, R. J.; Schmidt, P.; Tyler,
P. C. J. Chem. Soc., Perkin Trans. 1 1985, 301–303; (g)
Bernotas, R. C.; Ganem, B. Tetrahedron Lett. 1985, 26,
1123–1126; (h) Hafele, B.; Schroter, D.; Jager, V. Angew.
Chem. 1986, 98, 87–89; (i) Florent, J. C.; Ughetto-
Monfrin, J.; Monneret, C. J. Org. Chem. 1987, 52, 1051–
1056; (j) Fuerstner, A.; Weidmann, H. J. Org. Chem. 1989,
54, 2307–2311; (k) Sarandeses, L. A.; Luche, J. L. J. Org.
Chem. 1992, 57, 2757–2760.
14. Nicolaou, K. C.; Duggan, M. E.; Ladduwahetty, T.
Tetrahedron Lett. 1984, 25, 2069–2072.
15. Huo, S. Org. Lett. 2003, 5, 423–425.
16. Different batches of zinc dust from Spectrochem Pvt. Ltd
(India) were used (from 1 month to 2 years old).
17. The reaction was carried out on 5 g scale.
18. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102,
5974–5976.
References and notes
1. (a) Yadav, J. S.; Gadgil, V. R. J. Chem. Soc., Chem.
Commun. 1989, 1824–1825, and references cited therein;
(b) Raghavan, S.; Naveen Kumar, Ch.; Tony, K. A.;
Ramakrishna Reddy, S.; Ravi Kumar, K. Tetrahedron
Lett. 2004, 45, 7231–7234; (c) Singh, O. V.; Kampf, D. J.;
Han, H. Tetrahedron Lett. 2004, 45, 7239–7242; (d)
Lambordo, M.; Gianotti, K.; Sebastiano, L.; Trombini,
C. Tetrahedron 2004, 60, 11725–11732; (e) Chang, Y. K.;
Lee, B. Y.; Kim, D. J.; Lee, G. S.; Jeon, H. B.; Kim, K. S.
J. Org. Chem. 2005, 70, 3299–3302.
2. (a) Xu, Z.; Johannes, C. W.; La, D. S.; Hofilena, G. E.;
Hoveyda, A. H. Tetrahedron 1997, 53, 16377–16390; (b)
Szolcsanyi, P.; Gracza, T.; Koman, M.; Pronayova, N.;
Liptaj, T. Tetrahedron: Asymmetry 2000, 11, 2579–2597;
(c) Hartmann, K.; Kim, B. G.; Linker, T. Synlett 2004,
2728–2731; (d) Postema, M. H. D.; Piper, J. L.; Betts, R.
L.; Valeriote, F. A.; Pietraszkewicz, H. J. Org. Chem.
2005, 70, 829–836.
3. Zhang, Ji.; Blazecka, P. G.; Angell, P.; Lovdahl, M.;
Curran, T. T. Tetrahedron 2005, 61, 7807–7813, and
references cited therein.