10.1002/chem.202100874
Chemistry - A European Journal
COMMUNICATION
[1] a) Y. Liu, J.-M. Lehn, A. K. H. Hirsch, Acc. Chem. Res. 2017, 50, 376-386;
b) W. Zhang, Y. Jin, Dynamic Covalent Chemistry: Principles, Reactions,
and Applications, John Wiley & Sons Ltd, Chichester, 2018, p. 1-26; c) J.
F. Reuther, S. D. Dahlhauser, E. V. Anslyn, Angew. Chem. Int. Ed. 2019,
58, 74-85; Angew. Chem. 2019, 131, 76-88.
for competitive system to reach its thermodynamic equilibrium is
determined by the slowest process. In this case, the slower
formation of 1·MomA determines the time to reach the
thermodynamic equilibrium of the system (Figure 4b). Hence, our
proposed reactivity parameters can be used to design the kinetic
selection. For instance, if one wants to accelerate an imine
formation process, amines with large reactivity (N) can be
introduced into the systems, vice versa.
[2] a) H. Xu, W. Cao, X. Zhang, Acc. Chem. Res. 2013, 46, 1647-1658; b) N.
Giri, M. G. Del Popolo, G. Melaugh, R. L. Greenaway, K. Ratzke, T.
Koschine, L. Pison, M. F. C. Gomes, A. I. Cooper, S. L. James, Nature 2015,
527, 216-220; c) J. Xia, P. Zhao, K. Zheng, C. Lu, S. Yin, H. Xu, Angew.
Chem. Int. Ed. 2019, 58, 542-546; Angew. Chem. 2019, 131, 552-556.
[3] a) M. E. Belowich, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 2003-2024;
b) A. J. Greenlee, C. I. Wendell, M. M. Cencer, S. D. Laffoon, J. S. Moore,
Trends Chem. 2020, 2, 1043-1051.
We further designed a more complex [2×2] competitive system
(Figure 4c), which contains two amines (PrA and PmA) and two
aldehydes (2m and 3). At the early stage of reaction (30 s), 3·PrA
formed rapidly as a major product (Figure 4d, orange), along with
a small amount of 2m·PrA. This can be explained by much higher
reactivity of PrA (N=0.83) compared with PmA (N=-0.35). Thus,
the kinetics of imine formation are dominated by amines rather
than aldehydes, further proved the availability of reactivity
parameters in designing kinetic selection of imine-based chemical
reaction networks. By contrast, the ratio of the thermodynamic
products is dominated by aldehydes, as evidenced by the higher
ratio of 3·PmA and 3·PrA than 2·PmA and 2·PrA. This
experiment provides valuable information on how to manipulate
kinetic and thermodynamic selection for imine formation.
In summary, we have quantified the reactivity parameters of a
series of aldehydes and amines for imine formation in aqueous
solution using μF-NMR. The high time-resolution NMR spectra
unambiguously gave the kinetic profiles of imine formation in
aqueous solution as a 2-1 reversible reaction. More importantly,
we introduced an empirical equation containing the reactivity
parameters of amine (N) and aldehyde (SE and E), which can
quantitatively describe their reactivity parameters. Such
parameters were used to predict the forward reaction rate
constants (k+) of an amine (PmA) through only one reaction.
Finally, we rationally designed two competitive imine formation
systems ([1×2] and [2×2]) based on their differences in reactivity
parameters. Kinetic investigation of competitive systems revealed
that the kinetic selection was determined by the reactivity of
amines, whereas thermodynamics distribution was determined by
the stability of aldehydes. Our work demonstrated the capability
of μF-NMR in studying the kinetics of fast chemical reactions, and
quantification of the reactivity parameters of imine formation.
[4] R. L. Greenaway, M. J. Bennison, B. M. Alston, C. J. Pugh, M. A. Little, E.
G. B. Eden-Rump, R. Clowes, A. Shakil, H. J. Cuthbertson, H. Armstrong,
M. E. Briggs, A. I. Cooper, V. Santolini, M. Miklitz, K. E. Jelfs, Nat. Commun.
2018, 9, 2849.
[5] a) A. Herrmann, Chem. Soc. Rev. 2014, 43, 1899-1933; b) Y. Lei, Q. Chen,
P. Liu, L. Wang, H. Wang, B. Li, X. Lu, Z. Chen, Y. Pan, F. Huang, H. Li,
Angew. Chem. Int. Ed. 2021, 60, 4705-4711; Angew. Chem. 2021, 133, 2-
9.
[6] a) G. M. Santerre, C. J. Hansrote, T. I. Crowell, J. Am. Chem. Soc. 1958,
80, 1254-1257; b) W. P. Jencks, J. Am. Chem. Soc. 1959, 81, 475-481; c)
E. H. Cordes, W. P. Jencks, J. Am. Chem. Soc. 1963, 85, 2843-2848; d) K.
Koehler, W. Sandstrom, E. H. Cordes, J. Am. Chem. Soc. 1964, 86, 2413-
2419; e) J. M. Sayer, W. P. Jencks, J. Am. Chem. Soc. 1973, 95, 5637-
5649; f) M. Ciaccia, S. Di Stefano, Org. Biomol. Chem. 2015, 13, 646-654.
[7] E. Harel, L. Schroder, S. Xu, Annu. Rev. Anal. Chem. 2008, 1, 133-163.
[8] C. Godoy-Alcantar, A. K. Yatsimirsky, J. M. Lehn, J. Phys. Org. Chem. 2005,
18, 979-985.
[9] a) Y. Zhou, L. Li, H. Ye, L. Zhang, L. You, J. Am. Chem. Soc. 2016, 138,
381-389; b) S. Kulchat, M. N. Chaur, J.-M. Lehn, Chem-Eur. J. 2017, 23,
11108-11118; c) M. He, J.-M. Lehn, J. Am. Chem. Soc. 2019, 141, 18560-
18569.
[10] H. Zheng, H. Ye, X. Yu, L. You, J. Am. Chem. Soc. 2019, 141, 8825-8833.
[11] a) W. P. Bula, W. Verboom, D. N. Reinhoudt, H. J. G. E. Gardeniers, Lab
Chip 2007, 7, 1717-1722; b) G. S. Jeong, S. Chung, C.-B. Kim, S.-H. Lee,
Analyst 2010, 135, 460-473; c) S. Mozharov, A. Nordon, D. Littlejohn, C.
Wiles, P. Watts, P. Dallin, J. M. Girkin, J. Am. Chem. Soc. 2011, 133, 3601-
3608; d) J. Yue, J. C. Schouten, T. A. Nijhuis, Ind. Eng. Chem. Res. 2012,
51, 14583-14609; e) Q. Tu, L. Pang, Y. Zhang, M. Yuan, J. Wang, D. Wang,
W. Liu, J. Wang, Chin. J. Chem. 2013, 31, 304-316; f) C. Liu, Y. Li, B.-F.
Liu, Talanta 2019, 205, 120136; g) V. Fath, P. Lau, C. Greve, N. Kockmann,
T. Roeder, Org. Process Res. Dev. 2020, 24, 1955-1968.
[12] D. A. Foley, E. Bez, A. Codina, K. L. Colson, M. Fey, R. Krull, D. Piroli, M.
T. Zell, B. L. Marquez, Anal. Chem. 2014, 86, 12008-12013.
[13] a) R. M. Fratila, A. H. Velders, Annu. Rev. Anal. Chem. 2011, 4, 227-249;
b) V.-V. Telkki, V. V. Zhivonitko, A. Selent, G. Scotti, J. Leppaeniemi, S.
Franssila, I. V. Koptyug, Angew. Chem. Int. Ed. 2014, 53, 11289-11293;
Angew. Chem. 2014, 126, 11471-11475; c) A. Bracher, S. Hoch, K. Albert,
H. J. Kost, B. Werner, E. von Harbou, H. Hasse, J. Magn. Reson. 2014,
242, 155-161; d) A. Scheithauer, A. Braecher, T. Gruetzner, D. Zollinger,
W. R. Thiel, E. von Harbou, H. Hasse, Ind. Eng. Chem. Res. 2014, 53,
17589-17596; e) W. Wu, H. Yi, D. Chen, R. Lu, T. Yuan, J. Chen, Z. Ni,
Microsyst. Technol. 2014, 20, 419-425; f) M. V. Gomez, A. M. Rodriguez,
A. de la Hoz, F. Jimenez-Marquez, R. M. Fratila, P. A. Barneveld, A. H.
Velders, Anal. Chem. 2015, 87, 10547-10555; g) J. Maisch, K.
Kreppenhofer, S. Buechler, C. Merle, S. Sobich, B. Goerling, B. Luy, R.
Ahrens, A. E. Guber, P. Nick, J. Plant Physiol. 2016, 200, 28-34; h) M.
Sharma, M. Utz, J. Magn. Reson. 2019, 303, 75-81; i) B. Wu, S. von der
Ecken, I. Swyer, C. Li, A. Jenne, F. Vincent, D. Schmidig, T. Kuehn, A. Beck,
F. Busse, H. Stronks, R. Soong, A. R. Wheeler, A. Simpson, Angew. Chem.
Int. Ed. 2019, 58, 15372-15376; Angew. Chem. 2019, 131, 15516-15520.
[14] a) J. Bart, A. J. Kolkman, A. J. Oosthoek-de Vries, K. Koch, P. J. Nieuwland,
H. Janssen, J. van Bentum, K. A. M. Ampt, F. P. J. T. Rutjes, S. S.
Wijmenga, H. Gardeniers, A. P. M. Kentgens, J. Am. Chem. Soc. 2009, 131,
5014-5015; b) A. Braecher, R. Behrens, E. von Harbou, H. Hasse, Chem.
Eng. J. 2016, 306, 413-421.
Acknowledgements
This work is supported by the NSFC (No. 91427304, 21573181,
91227111, 21971216, 21722304, 21672214, and 21971217), the
Top-Notch Young Talents Program of China, and the
Fundamental Research Funds for the Central Universities of
China (No. 20720160050). Xinchang Wang and Liulin Yang also
thank the support from Nanqiang Young Top-notch Talent
Fellowship in Xiamen University, and Lei You thanks the Key
Research Program of Frontier Sciences (QYZDB-SSW-SLH030)
of the CAS for funding. Development and construction of the NMR
probe were supported in part by a Marie Curie Career Integration
Grant to MU by the European Commission (Project μF-NMR) and
by the EU H2020 Project "TISuMR".
Keywords: Dynamic covalent chemistry • Imines • Microfluidic
NMR • Dynamic combinatorial library • Kinetics
5
This article is protected by copyright. All rights reserved.