Page 9 of 10
PleaseGdr oe en no Ct ha de jmu si st t mr yargins
DOI: 10.1039/C7GC03072J
Journal Name
ARTICLE
3
7
according to a reported procedure. Reductive etherification of This work was supported by the NSFC (21572212, 21472033,
the obtained HMF by using the developed Co catalyst system and 21325208), MOST (2017YFA0303502), CAS (YZ201563),
was then undertaken to synthesize intermediate BMMF. The FRFCU and PCSIRT. The authors thank the Hefei Leaf Biotech Co.,
reaction was carried out in a 50 mL parr autoclave equipped Ltd. and Anhui Kemi Machinery Technology Co., Ltd. for free
with a magnetic stirrer, a temperature probe and a programmed samples and equipment that benefited our ability to conduct
temperature controller. 1 g of fructose, 10 μL concentrated this study.
hydrochloric acid and 10 mL of isopropanol were added to parr
°
autoclave. Stirring and heating to 120 C under 500 rpm/min
°
References
stirring and heat preservation at 120 C for 2 h. Then removal of
solvent under vacuum, and centrifugation after adding 3 mL
water. The water layer was extracted three times with ethyl
acetate, and the organic layer was dried with anhydrous sodium
sulfate. Then removal of solvent under vacuum and 70% isolated
yield of HMF was obtained. Subsequently the residue was
diluted with 40 mL of methanol and transferred to the 50 mL
1
(a) A. Corma, O. de la Torre, M. Renz, N. Villandier, Angew.
Chem. Int. Ed., 2011, 50, 2375 2378; (b) Y. Nakagawa, S. B.
Liu, M. Tamura, K. Tomishige, ChemSusChem, 2015,
−
8, 1114
−
−
1
9
132; (c) M. Stöcker, Angew. Chem. Int. Ed., 2008, 47, 9200
211; (d) J. C. Serrano-Ruiz, R. M. West, J. A. Dumesic, Annu.
, 79 100; (e) H. Olcay, A. V.
Subrahmanyam, R. Xing, J. Lajoie, J. A. Dumesic, G. W. Huber,
Energ. Environ. Sci., 2013, , 205 216; (f) A. Corma, S. Iborra,
A. Velty, Chem. Rev., 2007, 107, 2411
B. J. Xu, ACS Catal., 2016, , 1420
Chem. Soc. Rev., 2012, 41, 1538
Gallezot, C. Pinel, Chem. Rev., 2014, 114, 1827
Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev., 2012,
, 8075 8098.
(a) H. Li, S. Saravanamurugan, S. Yang, A. Riisager, Green
Rev. Chem. Biomol., 2010,
1
−
parr autoclave. 80 mg of Co-400 catalyst was added and the
°
6
−
−
2502; (g) M. J. Gilkey,
− 1436; (h) P. Gallezot,
reaction was carried out at 3 MPa H
2
, 140 C, 3 h. Conclusively
6
filtrated the Co-400 catalyst and removed methanol, 95% yield
of BMMF was obtained. The total isolated yield of BMMF was
obtained as 66.5% from fructose.
−
1558; (i) M. Besson, P.
1870; (j) D. M.
−
4
1
−
2
3
Chem., 2016, 18, 726
Chem., 2012, 14, 1593
(a) G. S. Yi, S. P. Teong, Y. G. Zhang, Green Chem., 2016, 18
−
−
734; (b) G. A. Kraus, T. Guney, Green
1596.
Conclusions
The efficient reductive etherification of HMF to BMMF was
carried out by using the simple reduced metallic Co catalyst. At
,
9
79
ChemSusChem, 2014,
Y. G. Zhang, ChemSusChem, 2015,
Z. T. Du, J. Xu, Q. H. Chu, Y. Pang, ChemSusChem, 2011,
4; (e) H. L. Wang, Y. X. Yang, T. S. Deng, C. M. Chen, Y. L. Zhu,
X. L. Hou, ACS Catal., 2015, , 5636 5646; (f) X. X. Liu, H.
Ding, Q. Xu, W. Z. Zhong, D. L. Yin, S. P. Su, J. Energ. Chem.,
2016, 25, 117 121.
(a) X. Tang, J. N. Wei, N. Ding, Y. Sun, X. H. Zeng, L. Hu, S. J. Liu,
T. Z. Lei, L. Lin, Renew. Sust. Energ. Rev., 2017, 77, 287 296;
b) M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16
−
983; (b) G. S. Yi, S. P. Teong, X. K. Li, Y. G. Zhang,
, 2131 2137; (c) G. S. Yi, S. P. Teong,
, 1151 1155; (d) J. P. Ma,
, 51
0 °C, 2 MPa H
7
−
9
2
and reaction time of 1 h, the yield of
8
−
hydrogenated product BHMF was 93% and the conversion of
HMF was 94% by using Co-400 catalyst. HMF was converted
4
−
5
completely and 98.5% yield of etherified product BMMF was
°
5
−
obtained at 140 C, 2 MPa H
2
2+/3+
, 1 h by using Co-400 catalyst. The
0
coexistence of Co and Co
−
species was observed on the
4
5
surface of the Co catalyst according to XPS analysis. This might
be more conducive to the electron transfer, which endows the
catalyst not only with hydrogenation activity, but also with
strong etherification activity. According to XRD analysis, we
−
(
,
516
− 547; (c) N.Perret, A. Grigoropoulos, M. Zanella, D. T.
Manning, J. B. Claridge, M. J. Rosseinsky, ChemSusChem, 2016,
, 521 531.
(a) T. Komanoya, T. Kinemura, Y. Kita, K. Kamata, M Hara, J.
Am. Chem. Soc., 2017, 139, 11493 11499; (b) A. Dunbabin, F.
Subrizi, J. M. Ward, T. D. Sheppard, H. C. Hailes, Green Chem.,
2017, 19, 397 404; (c) S. Sowmiah, L. F. Veiros, J. M. S. S.
Esperanca, L. P. N. Rebelo, C. A. M. Afonso, Org. Lett., 2015,
, 5244 5247; (d) Q. Girka, N. Hausser, B. Estrine, N.
Hoffmann, J. L. Bras, S. Marinkovi ć, J. Muzart, Green Chem.,
017,19, 4074 4079.
(a) J. Ohyama, R. Kanao, A. Esaki, A. Satsuma, Chem. Commun.,
2014, 50, 5633 5636; (b) J. Ohyama, R.Kanao, Y. Ohira, A.
Satsuma, Green Chem., 2016, 18, 676 680; (c) M. H. Zhou, Z.
Zeng, H. Y. Zhu, G. M. Xiao, R. Xiao, J. Energy. Chem., 2014, 23
96.
(a) G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic,
Science, 2005, 308, 1446 1450; (b) D.J. Liu, E. Y. X. Chen,
ChemSusChem, 2013, , 2236 2239; (c) A. Corma, O. D. L.
Torre, M. Renz, N. Villandier, Angew.Chem. Int. Ed., 2011, 50,
2375 2378; (d) A. D. Sutton, F. D. Waldie, R. Wu, M. Schlaf, L.
A. P. Silks, III, J. C. Gordon, Nat. Chem., 2013, , 428 432.
(a) L. Hu, L. Lin, Z. Wu, S. Y. Zhou, S. J. Liu, Renew. Sust. Energ.
Rev., 2017, 74, 230 257; (b) R. J. van Putten, J. C. van der
Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries,
Chem. Rev., 2013, 113, 1499 1597; (c) Y. Nakagawa, M.
Tamura, K. Tomishige, ACS Catal., 2013, , 2655 2668; (d)
0
9
−
found that only the diffraction peaks arising from Co species
were present, indicating that Co
amorphous state in the Co catalyst. It was found that the
catalyst had an appropriate acidity through NH -TPD
3 4
O species were in an
−
3
−
characterization. The catalyst became more porous and rougher
after reduction at high temperature according to the TEM and
SEM analyses. This may be more beneficial for enhancing the
selectivity of etherification product and the mass transfer of
reaction species. The reaction processes were studied in detail
1
7
−
2
−
6
7
−
1
−
by H-NMR analysis and a possible reaction mechanism is
,
proposed. A slight decrease in activity was attributed to the loss
of catalyst during the cycle operations. Finally, 66.5% isolated
yield of BMMF was obtained from fructose in two-steps.
91 −
−
6
−
Conflicts of interest
−
5
−
There are no conflicts to declare.
8
−
−
Acknowledgements
3
−
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins