Scheme 5 Cysteine-specific allylation by reductive rearrangement of Se-allyl selenenylsulfide.
8 Y. A. Lin, J. M. Chalker and B. G. Davis, ChemBioChem, 2009,
10, 959–969.
9 D. Burtscher and K. Grela, Angew. Chem., Int. Ed., 2009, 48,
442–454.
10 J. B. Binder and R. T. Raines, Curr. Opin. Chem. Biol., 2008, 12,
767–773.
11 A. K. Chatterjee, T.-L. Choi, D. P. Sanders and R. H. Grubbs,
J. Am. Chem. Soc., 2003, 125, 11360–11370.
12 S. B. Garber, J. S. Kingsbury, B. L. Gray and A. H. Hoveyda,
J. Am. Chem. Soc., 2000, 122, 8168–8179.
13 G. J. L. Bernardes, J. M. Chalker, J. C. Errey and B. G. Davis,
J. Am. Chem. Soc., 2008, 130, 5052–5053.
14 M. J. Brown, P. D. Milano, D. C. Lever, W. W. Epstein and
C. D. Poulter, J. Am. Chem. Soc., 1991, 113, 3176–3177.
15 K. Kuhn, D. J. Owen, B. Bader, A. Wittinghofer, J. Kuhlmann and
H. Waldmann, J. Am. Chem. Soc., 2001, 123, 1023–1035.
16 B. Ludolph, F. Eisele and H. Waldmann, J. Am. Chem. Soc., 2002,
124, 5954–5955.
17 K. Alexandrov, I. Heinemann, T. Durek, V. Sidorovitch,
R. S. Goody and H. Waldmann, J. Am. Chem. Soc., 2002, 124,
5648–5649.
Scheme 6 Model cross-metathesis at S-allyl cysteine.
Together, these methods provide three modes of flexible entry
to protein substrates suitable for olefin metathesis. This
flexibility is important when adapting these reactions to a
protein of interest. For instance, allyl thiol adds efficiently to
dehydroalanine but might reduce natural disulfides; in this
case allyl chloride and allyl selenocyanate would be more
suitable. For a hindered cysteine, allyl chloride is more likely
to allylate non-selectively; in this case allyl thiol addition to
dehydroalanine (if there are no disulfides) and allylation
with allyl selenocyanate should be the methods of choice.
Regardless of the synthetic route, access to S-allyl cysteine-
containing proteins is useful to elucidate the full scope of olefin
metathesis as a protein conjugation method. The potential of
olefin metathesis in bioconjugation8,10,30 is driving our current
research and progress to this end will be reported in due
course.
18 G. L. Ellman, Arch. Biochem. Biophys., 1959, 82, 70–77.
19 G. DeSantis, C. Paech and J. B. Jones, Bioorg. Med. Chem., 2000,
8, 563–570.
20 M. L. Nielsen, M. Vermeulen, T. Bonaldi, J. Cox, L. Moroder and
M. Mann, Nat. Methods, 2008, 5, 459–460.
21 G. Hoefle and J. E. Baldwin, J. Am. Chem. Soc., 1971, 93,
6307–6308.
22 K. B. Sharpless and R. F. Lauer, J. Org. Chem., 1972, 37,
3973–3974.
We acknowledge our sources of generous financial
support: Rhodes Trust (J.M.C.); EPSRC (Y.A.L.); European
Commission (O.B.).
23 D. Crich, F. Brebion and V. Krishnamurthy, Org. Lett., 2006,
8, 3593–3596.
24 D. Crich, V. Krishnamurthy and T. K. Hutton, J. Am. Chem. Soc.,
2006, 128, 2544–2545.
Notes and references
25 D. Crich, V. Krishnamurthy, F. Brebion, M. Karatholuvhu,
V. Subramanian and T. K. Hutton, J. Am. Chem. Soc., 2007,
129, 10282–10294.
1 G. T. Hermanson, Bioconjugate Techniques, Academic Press,
San Diego, 2nd edn, 2008.
2 C. P. R. Hackenberger and D. Schwarzer, Angew. Chem., Int. Ed.,
2008, 47, 10030–10074.
3 I. S. Carrico, Chem. Soc. Rev., 2008, 37, 1423–1431.
4 D. Qi, C.-M. Tann, D. Haring and M. D. Distefano, Chem. Rev.,
2001, 101, 3081–3112.
5 D. P. Gamblin, S. I. van Kasteren, J. M. Chalker and B. G. Davis,
FEBS J., 2008, 275, 1949–1959.
26 D. Crich and F. Yang, J. Org. Chem., 2008, 73, 7017–7027.
27 Z. Li, C. Wang, Y. Fu, Q.-X. Guo and L. Liu, J. Org. Chem., 2008,
73, 6127–6136.
28 D. P. Gamblin, P. Garnier, S. J. Ward, N. J. Oldham,
A. J. Fairbanks and B. G. Davis, Org. Biomol. Chem., 2003, 1,
3642–3644.
29 J. M. Chalker, G. J. L. Bernardes, Y. A. Lin and B. G. Davis,
Chem.–Asian J., 2009, 4, 630–640.
6 B. G. Davis, Pure Appl. Chem., 2009, 81, 285–298.
7 Y. A. Lin, J. M. Chalker, N. Floyd, G. J. L. Bernardes and
B. G. Davis, J. Am. Chem. Soc., 2008, 130, 9642–9643.
30 K. Kirshenbaum and P. S. Arora, Nat. Chem. Biol., 2008, 4,
527–528.
ꢀc
This journal is The Royal Society of Chemistry 2009
3716 | Chem. Commun., 2009, 3714–3716