P.R. Torres et al. / Journal of Molecular Catalysis B: Enzymatic 102 (2014) 99–105
105
lower than Vmax at 50 ◦C). In a comparative way, kinetic parame-
ters for l-arabinose (the natural substrate of enzyme) were also
Results revealed that Km for d-galactose was approximately 3-fold
higher than the corresponding Km for l-arabinose. Nevertheless, the
enzyme from E. faecium exhibited kinetic advantages with respect
to other l-arabinose isomerases reported far in terms of d-galactose
biotransformation [4].
[2] H. Blum, H. Beier, H.J. Gross, Electrophoresis 8 (1987) 93–99.
[3] P.S.J. Cheetham, A.N. Wootton, Enzyme Microb Technol 15 (1993) 105–108.
[4] L. Cheng, W. Mu, T. Zhang, B. Jiang, Appl Microbiol Biotechnol 86 (2010)
1089–1097.
[5] H. Chouayekh, W. Bejar, M. Rhimi, K. Jelleli, M. Mseddi, S. Bejar, FEMS Microbiol
Lett 277 (2007) 260–267.
[6] Z. Dische, E. Borenfreund, J Biol Chem 192 (1951) 583–587.
[7] E.C. Heath, B.L. Horecker, P.Z. Smyrniotis, Y. Takagi, J Biol Chem 231 (1958)
1031–1037.
[8] R.J. Heckly, Adv Appl Microbiol 24 (1978) 1–53.
[9] O.O. Ibrahim, J.E. Spradlin, Process for manufacturing d-tagatose, US Patent
6,057,135, 2000.
[10] Y. Ishida, T. Kamiya, H. Itoh, Y. Kimura, K. Izumori, J Ferment Bioeng 83 (1997)
529–534.
4. Conclusion
[11] H. Itoh, T. Sato, T. Takeuchi, A.R. Khan, K. Izumori, J Ferment Bioeng 79 (1995)
184–185.
[12] K. Izumori, T. Miyoshi, S. Tokuda, K. Yamabe, Appl Environ Microbiol 46 (1984)
1055–1057.
[13] K. Izumori, K. Tsuzaki, J Ferment Bioeng 66 (1988) 225–227.
[14] K. Izumori, Y. Ueda, K. Yamanaka, J Bacteriol 133 (1978) 413–414.
[15] F. Jørgensen, O.C. Hansen, P. Stougaard, Appl Microbiol Biotechnol 64 (2004)
816–822.
[16] B.C. Kim, Y.H. Lee, H.S. Lee, D.W. Lee, E.A. Choe, Y.R. Pyun, FEMS Microbiol Lett
212 (2002) 121–126.
[17] H.J. Kim, J.H. Kim, H.J. Oh, D.K. Oh, J Appl Microbiol 101 (2006) 213–221.
[18] H.J. Kim, D.K. Oh, J Biotechnol 120 (2005) 162–173.
[19] J.H. Kim, P. Prabhu, M. Jeya, M.K. Tiwari, H.J. Moon, R.K. Singh, J.K. Lee, Appl
Microbiol Biotechnol 85 (2010) 1839–1847.
[20] J.W. Kim, Y.W. Kim, H.J. Roh, H.Y. Kim, J.H. Cha, K.H. Park, C.S. Park, Biotechnol
Lett 25 (2003) 963–967.
[21] P. Kim, Appl Microbiol Biotechnol 65 (2004) 243–249.
[22] U.K. Laemmli, Nature 227 (1970) 680–685.
[23] D.W. Lee, E.A. Choe, S.B. Kim, S.H. Eom, Y.H. Hong, S.J. Lee, H.S. Lee, D.Y. Lee, Y.R.
Pyun, Arch Biochem Biophys 434 (2005) 333–343.
[24] D.W. Lee, H.J. Jang, E.A. Choe, B.C. Kim, S.J. Lee, S.B. Kim, Y.H. Hong, Y.R. Pyun,
Appl Environ Microbiol 70 (2004) 1397–1404.
[25] S.J. Lee, D.W. Lee, E.A. Choe, Y.H. Hong, S.B. Kim, B.C. Kim, Y.R. Pyun, Appl Environ
Microbiol 71 (2005) 7888–7896.
[26] Y. Li, Y. Zhu, A. Liu, Y. Sun, Extremophiles 15 (2011) 441–450.
[27] R.M. Manzo, A.C. Simonetta, A.C. Rubiolo, E.J. Mammarella, Braz J Chem Eng 30
(4) (2013) 711–720.
[28] M. Manzoni, M. Rollini, Process Biochem 36 (2001) 971–977.
[29] S. Muniruzzanman, H. Tokunaga, K. Izumori, J Ferment Bioeng 78 (1994)
145–148.
[30] J. Patrick, N. Lee, Methods Enzymol 41 (1975) 453–458.
[31] J.W. Patrick, N. Lee, J Biol Chem 243 (1968) 4312–4318.
[32] J.W. Patrick, N. Lee, J Biol Chem 244 (1969) 4277–4283.
[33] D.N. Perkins, D.J.C. Pappin, D.M. Creasy, J.S. Cottrell, Electrophoresis 20 (1999)
3551–3567.
In this work, an l-arabinose isomerase from wild-type strain
E. faecium DBFIQ E36 was successfully purified by affinity
chromatography using a specific l-arabitol-agarose bioadsorbent
conveniently designed. The enzyme (present in low amount
in sample applied to affinity column) was purified 720-fold
in relation to cell-free extract. Purification factor reported was
the highest obtained up to date and this could be possible
by means of employing a highly specific interaction between
the enzyme and its immobilized natural competitive inhibitor,
l-arabitol. This methodology, greatly employed for other industri-
ally relevant keto-isomerases, has several advantages compared
with conventional purification techniques or recombinant pro-
duction of enzyme, regarding reusability of affinity bioadsorbent,
time/equipment requirements and safety, respectively.
The purified enzyme exhibited a more acidic pI compared
with other l-arabinose isomerases explaining the charged and
hydrophilic nature which, in turns resulted in a high salt con-
centration necessary for enzyme salting-out. Mass spectrometry
technique revealed a molecular weight of 48 kDa for monomer
whereas molecular mass of native enzyme (tetrameric) determined
by gel-filtration was 187 kDa. The enzyme exhibited an optimum
pH of 7.0 and optimum temperature of 50 ◦C, and showed good pH
and temperature stability. Preliminary kinetics studies indicated
that the enzyme was not inhibited by its product, a technologically
attractive characteristic, explaining the weak bioaffinity adsorption
on l-ribitol-agarose bioadsorbent.
[34] P. Prabhu, M.K. Tiwari, M. Jeya, P. Gunasekaran, I.W. Kim, J.K. Lee, Appl Microbiol
Biotechnol 81 (2008) 283–290.
[35] M. Rhimi, S. Bejar, Biochim Biophys Acta 1760 (2006) 191–199.
[36] M. Rhimi, R. Ilhammami, G. Bajic, S. Boudebbouze, E. Maguin, R. Haser, N. Agha-
jari, Bioresour Technol 101 (2010) 9171–9177.
[37] H.J. Roh, S.H. Yoon, P. Kim, Biotechnol Lett 22 (2000) 197–199.
[38] M. Rollini, M. Manzoni, Process Biochem 40 (2005) 437–444.
[39] N. Salonen, A. Nyyssölä, K. Salonen, O. Turunen, Appl Biochem Biotechnol 168
(2012) 392–405.
[40] T. Shimonishi, Y. Okumura, K. Izumori, J Ferment Bioeng 79 (1995) 620–622.
[41] M.I.G. Siso, Bioresour Technol 57 (1996) 1–11.
[42] L. Sundberg, J. Porath, J Chromatogr A 90 (1974) 87–98.
[43] J.M. Walker, in: J.M. Walker (Ed.), The Protein Protocols Handbook, 2nd ed.,
Humana Press Inc., Totowa, NJ, 2002, pp. 11–14.
[44] L.J. Wallace, F.A. Eiserling, G. Wilcox, J Biol Chem 253 (1978) 3717–3720.
[45] K. Yamanaka, W.A. Wood, Methods Enzymol 9 (1966) 596–602.
[46] H. Yoshida, M. Yamada, T. Nishitani, G. Takada, K. Izumori, S. Kamitori, Acta
Crystallogr Sect F Struct Biol Cryst Commun 63 (2007) 123–125.
[47] K. Yoshihara, Y. Shinohara, T. Hirotsu, K. Izumori, J Biosci Bioeng 100 (2006)
219–222.
Acknowledgments
This work was partially sponsored with funds of the projects
CAI + D 2009 Tipo II PI-64-325 (Universidad Nacional del Litoral,
Santa Fe, Argentina), PIP N◦ 112-200801-01331 (Consejo Nacional
de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina),
PICT-2004 N◦ 20152 (Agencia Nacional de Promoción Científica
y
Tecnológica, Buenos Aires, Argentina) and FPR/F/BI/80/03-
UR/07/BVI/002 (MINCyT, Argentina and MEC, Uruguay), PEDECIBA
(Programa de Desarrollo de las Ciencias Básicas, Uruguay) and ANII
(Agencia Nacional de Investigación e Innovación, Uruguay). The
authors declare no competing financial interest.
References
[48] H. Zhang, B. Jiang, B. Pan, World J Microbiol Biotechnol 23 (2007) 641–646.
[49] W. Zhang, S. Niu, B.T. Chait, J Am Soc Mass Spectrom 9 (1998) 879–884.
[50] X. Zhou, J.C. Wu, World J Microbiol Biotechnol 28 (2012) 2205–2212.
[1] J.R. Beadle, J.P. Saunder, T.J. Wajada, Process for manufacturing tagatose, US
Patent 5,078,796, 1992.