This finding will open an avenue for using ZnII as a catalytic
center in an artificial peptidase. Furthermore, the present ZnII
complex system will be useful in elucidating the important
factor for the metal ion catalysts in enzymes.
Notes and references
z MALDI-TOF/MS of the mixture of BSA and ZnII-3 (1 : 100) showed
broad peaks in the m/z range 69 000–74 000, in contrast to a sharp
peak of BSA at 66 770 (Fig. S11w). The observations strongly indicate
the binding of 3 to BSA (The number of the bound 3 molecule is
estimated to be ca. 7–24 per one BSA molecule).
y Observed rate constants kobs with or without ZnII-3 determined from
the decrease in the elastase band were 0.63 hꢁ1 and 0.089 hꢁ1 at pH 8.0
(HEPES 50 mM) and 50 1C, respectively.
1 (a) D. W. Christianson and W. N. Lipscomb, Acc. Chem. Res.,
1989, 22, 62–69; (b) W. N. Lipscomb and N. Strater, Chem. Rev.,
1996, 96, 2375–2434; (c) Y. Itoh and M. Seiki, J. Cell. Physiol.,
2006, 206, 1–8; (d) H. Sato, T. Takino, Y. Okada, J. Cao,
A. Shinagawa, E. Yamamoto and M. Seiki, Nature, 1994, 370,
61–65.
2 (a) E. L. Hegg and J. N. Burstyn, J. Am. Chem. Soc., 1995, 117,
7015–7016; (b) L. Zhang, Y. Mei, Y. Zhang, S. Li, X. Sun and
L. Zhu, Inorg. Chem., 2003, 42, 492–498; (c) C. E. Yoo, P. S. Chae,
J. E. Kim, E. J. Jeong and J. Suh, J. Am. Chem. Soc., 2003, 125,
14580–14589; (d) S. H. Yoo, B. J. Lee, H. Kim and J. Suh, J. Am.
Chem. Soc., 2005, 127, 9593–9602; (e) S. W. Jang and J. Suh, Org.
Lett., 2008, 10, 481–484; (f) M. C. B. de Oliveira, M. Scarpellini,
A. Neves, H. Terenzi, A. J. Bortoluzzi, B. Szpoganics, A. Greatti,
A. S. Mangrich, E. M. de Souza, P. M. Fernandez and
M. R. Soares, Inorg. Chem., 2005, 44, 921–929;
(g) V. Rajendiran, M. Palaniandavar, P. Swaminathan and
L. Uma, Inorg. Chem., 2007, 46, 10446–10448.
Fig. 3 The steric structure of porcine pancreatic elastase (protein
data bank (PDB) ID: 1B0E). Possible scission sites are indicated by
arrows. For details, see ESI.w
elastase with ZnII-3 was observed. Furthermore, the decompo-
sition in the presence of ZnII-3 was rather slower than the
control experiment without ZnII-3. The results strongly sup-
port the important role of the lysine residues in the protein for
the decomposition by ZnII-3. Examination of the steric struc-
ture of porcine pancreatic elastase indicated that scissions at
sterically neighboring sites of the lysine residues will give
ca. 8790, 8950, 9060 and 5880 Da fragments (Fig. 3 and S9w).
Thus, the results are well explained by the mechanism that
ZnII-3 binds to the lysine residue by Schiff base formation, and
then promotes hydrolysis of sterically accessible peptide bonds.
Since ZnII is known to be redox inactive in regular con-
ditions, such as those employed in this study, the protein
scission should be due to hydrolysis. This is in contrast to
the case of CuII or other transition metal compounds, with
which the peptide bond scission can involve a redox reaction,
and, therefore, whether the cleavage involves redox or not
should be carefully examined.2,3 Previous studies indicated
that the role of ZnII in the peptide hydrolysis is to bind to
carbonyl oxygen, i.e. ZnII–OQC,7,10 and that it promotes the
nucleophilic attack of a water molecule, a hydroxide ion or a
hydroxy group in the amino acid residue7 or in the complex to
the carbonyl carbon. The weak interaction between ZnII and
the OQC group in the substrate will be stabilized by the Schiff
base formation when ZnII-3 is used, resulting in effective
hydrolysis (Fig. S10w).
3 T. M. Rana and C. F. Meares, J. Am. Chem. Soc., 1990, 112,
2457–2458.
4 W. Bal, R. Liang, J. Lukszo, S.-H. Lee, M. Dizdaroglu and
K. S. Kasprzak, Chem. Res. Toxicol., 2000, 13, 616–624.
5 (a) L. Zhu, L. Qin, T. N. Parac and N. M. Kostic, J. Am. Chem.
Soc., 1994, 116, 5218–5224; (b) L. Zhu, R. Bakhtiar and
N. M. Kostic, JBIC, J. Biol. Inorg. Chem., 1998, 3, 383–391;
(c) N. M. Milovic and N. M. Kostic, Inorg. Chem., 2002, 41,
7053–7063; (d) L. Zhu and N. M. Kostic, Inorg. Chim. Acta, 2002,
339, 104–110; (e) N. M. Milovic, L.-M. Dutca and N. M. Kostic,
Inorg. Chem., 2003, 42, 4036–4045.
6 A. Erxleben, Inorg. Chem., 2005, 44, 1082–1094.
7 M. Yashiro, Y. Sonobe, A. Yamamura, T. Takarada,
M. Komiyama and Y. Fujii, Org. Biomol. Chem., 2003, 1, 629–632.
8 D. E. Wilcox, Chem. Rev., 1996, 96, 2435–2458; J. E. Coleman,
Annu. Rev. Biochem., 1992, 61, 897–946; S. J. Lippard and
J. M. Berg, Principles of Bioinorganic Chemistry, University
Science Books, Mill Valley, California, 1994, pp. 257–267.
9 H. Sigel and R. B. Martin, Chem. Rev., 1982, 82, 385–426.
10 Y. Fujii, T. Kiss, T. Gajda, X.-S. Tan, T. Sato, Y. Nakano,
Y. Hayashi and M. Yashiro, JBIC, J. Biol. Inorg. Chem., 2002,
7, 843–851.
11 T. Peters, Jr, All About Albumin, Biochemistry, Genetics, and
Medical Applications, Academic Press, San Diego, 1996.
12 H. A. Schreuder, W. A. Metz, N. P. Peet, J. T. Pelton and
C. Tardif, PDB ID: 1B0E.
13 R. J. Cregge, S. L. Durham, R. A. Farr, S. L. Gallion, C. M. Hare,
R. V. Hoffman, M. J. Janusz, H. O. Kim, J. R. Koehl, S. Mehdi,
W. A. Metz, N. P. Peet, J. T. Pelton, H. A. Schreuder, S. Sunder
and C. Tardif, J. Med. Chem., 1998, 41, 2461–2488: PDB ID:
1B0F.
In conclusion, a ZnII complex having an aldehyde group,
ZnII-3, was found to cleave a protein backbone under mild
conditions. The stable binding of the ZnII complex to
the protein through a covalent bond appears to be essential.
The results suggest that ZnII can be very active toward peptide
hydrolysis when it strongly binds to the substrate polypeptide.
ꢀc
This journal is The Royal Society of Chemistry 2009
1546 | Chem. Commun., 2009, 1544–1546