10538
J. Am. Chem. Soc. 1999, 121, 10538-10544
Stereochemistry of Solvation of Benzylic Lithium Compounds:
Structure and Dynamic Behavior
Gideon Fraenkel,* Joseph H. Duncan, Kevin Martin, and Jinhai Wang
Contribution from the Department of Chemistry, The Ohio State UniVersity, Columbus, Ohio 43210
ReceiVed February 16, 1999
Abstract: Several sec-benzylic lithium compounds, both externally coordinated, [R-(trimethylsilyl)benzyl]-
lithium‚PMDTA (12) and p-tert-butyl-R-(dimethylethylsilyl)benzyllithium‚TMEDA (13), and internally
coordinated, [R-[[[cis-2,5-bis(methoxymethyl)-1-pyrrolidinyl]methyl]dimethylsilyl]-p-tert-butylbenzyl]lithium
(
14) and [R-[[[(S)-2-(methoxymethyl)-1-pyrrolidinyl]methyl]dimethylsilyl]benzyl]lithium (15), have been
13
prepared. Ring C NMR shifts indicate that 12-15 have partially delocalized structures. Externally solvated
allylic lithium compounds are found to be delocalized, and only some internally coordinated species are partially
delocalized. Compound 15 exists as >95% of one stereoisomer of the two invertomers at CR. This is in accord
with a published ee of >98% in products of the reactions of 15 with aldehydes. All four compounds show
evidence of one-bond C- Li spin coupling, ca. 3 Hz, which indicates a small detectable C-Li covalence.
Averaging of the 13C- Li coupling of 12 with increasing temperature provides the dynamics of intermolecular
13
6
6
q
ex
-1
C-Li bond exchange, with ∆H ) 9 ( 0.5 kcal mol . Carbon-13 NMR line shape changes due to geminal
methyls, and ligand carbons gave similar rates of inversion at CR in 13 (externally solvated) and 14 (internally
q
inv
-1
solvated), ∆H ≈ 4.9 ( 0.5 kcal mol . By contrast, barriers to rotation around the ring-CR bonds vary
q
rot
-1
widely, depending on the mode of lithium coordination, ∆H ≈ 8 ( 0.5 to 19 ( 1.0 kcal mol . Some
mechanisms for these processes are proposed.
1
1
compounds show 13C NMR shifts that are to be expected of
ion-pairs containing delocalized allylic anions, see 1-1. By
Main group allylic and benzylic organometallic compounds
4
have always been regarded as among the simplest delocalized
carbanionic species, a concept which is largely qualitatively
supported by the results of X-ray crystallographic, spectro-
scopic,4 and calculational studies. Solvated allylic lithium
2,3
,5
6,7
(1) (a)Wardell, J. L. In ComprehensiVe Organometallic Chemistry;
Wilkinson, G., Stone, F. G. H., Abel, E. W., Eds.; Pergammon Press:
Oxford, U.K. 1982; Vol. 7, pp 83-91, 97-106. (b) Seyferth, D.; Julia, T.
F. J. Organomet. Chem. 1967, 8, C13. (c) Schlosser, M.; Bosshardt, H.;
Walde, A.; St a¨ hle, N. Angew. Chem. 1980, 92, 302. (d) Brownstein, S.;
Bywater, S.; Worsfold, D. J. Organomet. Chem. 1980, 199, 1. (e) Hsieh,
H. L. J. Polym. Sci. A 1965, 3, 153-161; 163-172; 173-180.
contrast, unsolvated alkane-soluble allylic lithium compounds,
13
most likely aggregated as, for example, 1-2, show C NMR
8
shifts similar to those of alkenes. Therefore, they should be
(
2) (a) K o¨ ster, M.; Weiss, E. Chem. Ber. 1982, 115, 3422. (b) Sch u¨ mann,
regarded as largely localized compounds. Species with structures
between 1-1 and 1-2, i.e., partially delocalized, 1-3, with some
detectable C,Li covalency have not been recognized until
recently, and then only for compounds with attached pendant
U.; Weiss, E.; Dietrich, H.; Mahdi, W. J. Organomet. Chem. 1987, 322,
2
1
99. (c) Sebastian, J. F.; Grumwell, J. R.; Hsu, B. J. Organomet. Chem.
974, 78, C1. (d) Boche, G.; Etzrodt, H.; Marsch, M.; Massa, W.; Baum,
G.; Dietrich, H.; Mahdi, W. Angew. Chem. 1986, 98, 84. (e) Boche, G.;
Fraenkel, G.; Cabral, J.; Harms, K.; Van Eikema-Hommes, N. J. R.; Lorenz,
J.; Marsch, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1992, 114, 1562-
9
ligands, such as 1-4. For such cases, we proposed that restricted
1
565.
(
3) (a) Patterman, S. P.; Karle, I. L.; Stucky, G. D. J. Am. Chem. Soc.
1
970, 96, 1150. (b) Beno, M. A.; Hope, H.; Olmsted, M. M.; Power, P. P.
Organometallics 1985, 4, 2117. (c) Zarges, W.; Marsch, M.; Harms, K.;
Boche, G. Chem. Ber. 1989, 122, 2303. (d) Boche, G.; Marsch, M.; Harbach,
J.; Harms, K.; Ledig, B.; Schubert, F.; Lohrenz, J. C. W.; Ahlbrecht, H.
Chem.Ber. 1993, 126, 1887-1894. (e) Zarges, W.; Marsch, M.; Harms,
K.; Koch, W.; Frenking, G.; Boche, G. Chem. Ber. 1991, 124, 543-549.
(
4) (a) West, P.; Purmort, J. I.; McKinley, S. V. J. Am. Chem. Soc. 1968,
stereochemistry of internal coordination of lithium favored a
9
1
2
1
9
5
0, 797. (b) O’Brian, D. H.; Hart, A. J.; Russell, C. R. J. Am. Chem. Soc.
975, 97, 4410. (c) Benn, R.; Rufinska, A. J. Organomet. Chem. 1982,
39, C19. (d) Fraenkel, G.; Winchester, W. R. J. Am. Chem. Soc. 1989,
11, 3794-3797. (e) Bates, R. B.; Beavers, W. A. J. Am. Chem. Soc. 1974,
6, 5001. (f) Thompson, T. B.; Ford, W. T. J. Am. Chem. Soc. 1979, 101,
459.
(6) (a) Van Eikema-Hommes, N. J. R.; B u¨ hl, M.; Schleyer, P. v. R. J.
Organomet. Chem. 1991, 409, 307-320. (b) Erusalimski, C. B.; Kormer,
V. M. Zh. Org. Khim. 1984, 20, 2028. (c) Boche, G.; Decher, G. J.
Organomet. Chem. 1983, 259, 31. (d) Clark, T.; Rohde, C.; Schleyer, P. v.
R. Organometallics 1983, 2, 1344. (e) Pratt, L. M.; Khan, I. M. J. Comput.
Chem. 1995, 16, 1070.
(5) (a) Takahashi, K.; Kondo, Y.; Asami, R. Org. Magn. Reson. 1974,
6
1
1
, 580-582. (b) Takahashi, K.; Takaki, M.; Asami, R. Org. Magn. Reson.
971, 3, 539-543. (c) McKeever, L. D.; Waack, R. J. Organomet. Chem.
971, 28, 145-151. (d) Waack, R.; Baker, E. U.; Doran, M. A. Chem.
(7) (a) See: Lipkowitz, K. B.; Uhegbu, C.; Naylor, A. M.; Vance, R. J.
Comput. Chem. 1985, 6, 662. (b) Setzer, W. N.; Schleyer, P. v. R. AdV.
Organomet. Chem. 1985, 24, 353. (c) Vanermen, G.; Toppet, S.; Beylen,
M. Van. J. Chem. Soc., Perkin Trans. 2 1986, 707.
Commun. 1967, 1291-1293.
1
0.1021/ja990485v CCC: $18.00 © 1999 American Chemical Society
Published on Web 10/30/1999