JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
3 Shandiz, A. T.; Capraro, B. R.; Sosnick, T. R. Biochemistry
2007, 46, 13711–13719.
4 Vandevuer, S.; Van Bambeke, F.; Tulkens, P. M.; Prevost, M.
Proteins: Struct Funct Bioinformatics 2006, 63, 466–478.
5 Wilkinson, B.; Gilbert, H. F. Biochim Biophys Acta 2004, 1699,
35–44.
6 Wong, S. S.; Wong, L. J. C. Enzyme Microb Technol 1992, 14,
866–874.
7 Gutteridge, A.; Thornton, J. M. Trends Biochem Sci 2005, 30,
622–629.
8 Blackwell, H. E.; Sadowsky, J. D.; Howard, R. J.; Sampson, J.
N.; Chao, J. A.; Steinmetz, W. E.; O’Leary, D. J.; Grubbs, R. H. J
Org Chem 2001, 66, 5291–5302.
FIGURE 11 Solvent denaturation of uncrosslinked oligomer 1
and crosslinked oligomers 13–15. The fraction of oligomer that
is unfolded is relative to uncrosslinked oligomer 1. [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
9 Schafmeister, C. E.; Po, J.; Verdine, G. L. J Am Chem Soc
2000, 122, 5891–5892.
10 Holub, J. M.; Jang, H. J.; Kirshenbaum, K. Org Lett 2007, 9,
3275–3278.
the efficiency of the crosslinking reaction depends not only
on the length of the diamine tether but also on the place-
ment of the crosslink points (i.e., benzyl aldehyde moieties)
in the oligomer sequence. Placing a single crosslink in the
backbone across one turn of the helix provides some helix
stability, but results in a low degree of crosslinking. Adding
an additional staple using this strategy is generally ineffec-
tive both in terms of conversion and rigidifying the folded
structure. The most effective crosslinking strategy, in terms
of both conversion to product and restricting the unfolded
conformation, is to staple the foldamer across two turns of
the helix. This behavior has been observed previously in
peptide crosslinking studies,8,9 and it is interesting that it
appears to be conserved here using an entirely nonbiological
system.
11 Sanders, J. K. M. Chem Eur J 1998, 4, 1378–1383.
12 Breslow, R. Acc Chem Res 1995, 28, 146–153.
13 Breslow, R.; Dong, S. D. Chem Rev 1998, 98, 1997–2011.
14 Conn, M. M.; Rebek, J. Chem Rev 1997, 97, 1647–1668.
15 DeGrado, W. F.; Summa, C. M.; Pavone, V.; Nastri, F.; Lom-
bardi, A. Annu Rev Biochem 1999, 68, 779–819.
16 Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Cor-
nelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem Rev
2005, 104, 1445–1490.
17 Smaldone, R. A.; Moore, J. S. J Am Chem Soc 2007, 129,
5444–5450.
18 Dolain, C.; Zhan, C.; Leger, J.-M.; Daniels, L.; Huc, I. J Am
Chem Soc 2005, 127, 2400–2401.
Future applications of this methodology can include the syn-
thesis of foldamers that are incapable of unfolding entirely
where the folded conformation would remain persistent in
solvents that are known to promote the random coil confor-
mation (i.e., chloroform and methylene chloride). This would
also provide an opportunity to lock in stereochemistry to an
mPE foldamer biased with an excess of either its M or P
twist sense, creating a supramolecular host with a helically
chiral binding site. Chiral bias can be induced through the
use of either a chiral guest molecule or incorporation of chi-
ral elements into the foldamer structure itself.20,23,34,35 Addi-
tionally, foldamers with reduced backbone flexibility could
be used to systematically explore the effects of host flexibil-
ity on their reactivity with guest molecules.
19 Heemstra, J. M.; Moore, J. S. J Am Chem Soc 2004, 126,
1648–1649.
20 Prince, R. B.; Barnes, S. A.; Moore, J. S. J Am Chem Soc
2000, 122, 2758–2762.
21 Prince, R. B.; Saven, J. G.; Wolynes, P. G.; Moore, J. S. J
Am Chem Soc 1999, 121, 3114–3121.
22 Smaldone, R. A.; Moore, J. S. Chem Commun 2008,
1011–1013.
23 Tanatani, A.; Mio, M. J.; Moore, J. S. J Am Chem Soc 2001,
123, 1792–1793.
24 Arnt, L.; Tew, G. N. Macromolecules 2004, 37, 1283–
1288.
25 Gong, B. Acc Chem Res 2008, 41, 1376–1386.
This work was supported by the National Science Foundation
(NSF-CHE 0642413).
26 Hecht, S.; Huc, I. Foldamers: Structure, Properties, and
Application; Wiley-VCH: Weinheim, 2007.
27 Hecht, S.; Khan, A. Angew Chem Int Ed 2003, 42,
6021–6024.
REFERENCES AND NOTES
28 Hartley, C. S.; Elliott, E. L.; Moore, J. S. J Am Chem Soc
1 Grinthal, A.; Guidotti, G. Biochemistry 2004, 43, 13849–13858.
2007, 129, 4512–4513.
2 Puig, A.; Lyles, M. M.; Noiva, R.; Gilbert, H. F. J Biol Chem
29 Elliott, E. L.; Ray, C. R.; Kraft, S.; Atkins, J. R.; Moore, J. S. J
1994, 269, 19128–19135.
Org Chem 2006, 71, 5282–5290.
934
INTERSCIENCE.WILEY.COM/JOURNAL/JPOLA