7432
K. Takasu et al. / Tetrahedron Letters 44 (2003) 7429–7432
paroxetine. Further studies are underway aimed at
uncovering strategies to control the stereochemistry of
the process and at determining the detailed mechanism
of the reaction.
ture, and then, if necessary, was added tBuOH (0.25
equiv.). After being stirred for 12–24 h at the same
temperature, the resulting mixture was quenched by addi-
tion of satd NaHCO3 and extracted with AcOEt. The
organic layer was dried over MgSO4 and evaporated. The
residue was purified by flash column chromatography on
silica gel to afford piperidinone 3. trans-3a; Colorless
needles, mp 117–119°C; IR (KBr): w 1734, 1645, 1497,
Acknowledgements
1
1439, 1257 cm−1; H NMR (400 MHz, CDCl3): l 7.34–
7.16 (m, 10H), 4.74 (d, 1H, J=14.6 Hz), 4.55 (d, 1H,
J=14.6 Hz), 3.52 (dd, 1H, J=12.3, 9.1 Hz), 3.43 (s, 3H),
3.45–3.34 (m, 2H), 3.02–2.96 (m, 1H), 2.85 (dd, 1H,
J=5.6, 17.8 Hz), 2.68 (dd, 1H, J=10.2, 17.8 Hz); 13C
NMR (100 MHz, CDCl3): l 168.4, 140.9, 136.5, 128.7,
128.6, 128.2, 127.5, 127.2, 126.9, 52.0, 50.0, 47.7, 46.7,
41.5, 38.0; LRMS (m/z); 323(M+). Anal. calcd for
C20H21NO3: C, 74.28; H, 6.55; N, 4.33. Found: C, 74.25;
H, 6.52; N, 4.34. cis-3a; colorless oil; IR (neat): w 2932,
This work was financially supported by the Fujisawa
Foundation, a Grant-in-Aid for Encouragement of
Young Scientists (No. 14771239) and a Grant-in-Aid
for Scientific Research on Priority Areas (A) ‘Exploita-
tion of Multi Element Cyclic Molecules’ from the Min-
istry of Education, Culture, Sports, Science and
Technology, Japan.
1730, 1641, 1493, 1450, 1252, 1198, 1169, 702 cm−1 1H
;
References
NMR (400 MHz, CDCl3): l 7.35–7.22 (m, 8H), 7.03–7.00
(m, 2H), 4.67 (s, 2H), 3.71 (dd, 1H, J=12.5, 5.1 Hz), 3.58
(s, 3H), 3.36–3.27 (m, 2H), 3.16–3.11 (m, 1H) 2.93 (d, 2H,
J=5.4 Hz); 13C NMR (100 MHz, CDCl3): l 170.2, 168.6,
139.1, 136.5, 128.5, 128.5, 128.4, 127.5, 127.3, 51.8, 50.3,
44.7, 43.8, 39.6, 36.5; LRMS (m/z); 323 (M+). Anal. calcd
for C20H21NO3·0.25H2O: C, 73.26; H, 6.61; N, 4.27.
Found: C, 73.12; H, 6.48; N, 4.21.
1. (a) Elbein, D. A.; Molyneux, R. In Alkaloids; Chemical
and Biological Perspectives; Pelletier, S. W., Ed.; John
Wiley & Son, 1987; Vol. 57; (b) O’Hagan, D. Nat. Prod.
Rep. 2000, 17, 435–446.
2. (a) Laschat, S.; Dickner, T. Synthesis 2000, 1781–1813;
(b) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.;
Borcherding, D. R. Tetrahedron 2003, 59, 2953–2989 and
references cited therein.
3. Annulation reaction of a,b-unsaturated imines, which are
mono-reduced derivatives of a,b-unsaturated amides, are
well investigated: (a) Boger, D. L.; Weinreb, S. M. Hetero
Diels–Alder Methodology in Organic Synthesis; Academic
Press: San Diego, 1987; pp. 240–255; (b) Jayakumar, S.;
Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58,
379–471; (c) Wei, L.-L.; Hsung, R. P.; Sklenicka, H. M.;
Gerasyuto, A. I. Angew. Chem., Int. Ed. 2001, 40, 1516–
1518.
4. To the best of our knowledge, only limited examples were
reported for the synthesis of piperidines by means of
cyclodimerization of acrylamide equivalents: (a) Lorente,
A.; Navio, J. L. G.; Perez, J. C. L.; Soto, J. L. Synthesis
1985, 89–92; (b) Elliott, M. C.; Galea, N. M.; Long, M.
S.; Willock, D. J. Tetrahedron Lett. 2001, 42, 4937–4939.
5. (a) Ihara, M.; Ishida, Y.; Tokunaga, Y.; Kabuto, C.;
Fukumoto, K. J. Chem. Soc., Chem. Commun. 1995,
2085–2086; (b) Suzuki, M.; Ihara, M. Heterocycles 2000,
52, 1083–1084.
7. Sugi, K.; Itaya, N.; Katsura, T.; Igi, M.; Yamazaki, S.;
Ishibashi, T.; Yamaoka, T.; Kawada, Y.; Tagami, Y.;
Otsuki, M.; Ohshima, T. Chem. Pharm. Bull. 2000, 48,
529–536.
8. Reactions using unpurified R3SiX sometimes give differ-
ent results (for 3a; 60–80% yield), whereas use of freshly
distilled TBSOTf with tBuOH (0.25 equiv.) affords highly
reproducible results. We have reported purity of TMSI
affects on the chemical yield on intramolecular Michael–
aldol reaction. Takasu, K.; Ueno, M.; Ihara, M. J. Org.
Chem. 2001, 66, 4667–4672.
9. Dechant, K. L.; Clissold, S. P. Drugs 1991, 41, 225–253.
10. Recent examples for the synthesis of paroxetine, see: (a)
Greenhalgh, D. A.; Simpkins, N. S. Synlett 2002, 2074–
2076; (b) Senda, T.; Ogasawara, M. Hayashi, T. J. Org.
Chem. 2001, 66, 6852–6856; (c) Cossy, J.; Mirguet, O.;
Pardo, D. G.; Desmurs, J.-R. Eur. J. Org. Chem. 2002,
3543–3551 and references cited therein; (d) Yu, M. S.;
Lantos, I.; Peng, Z.-Q.; Yu, J.; Cacchio, T. Tetrahedron
Lett. 2000, 41, 5647–5651; (e) Murthy, K. S. K.; Rey, A.
W.; Tjepkema, M. Tetrahedron Lett. 2003, 44, 5355–5358.
11. In this sequence, cis-3c was obtained in 14% yield along
with trans-3c. cis-3c can be converted into trans-3c by
treatment with NaOMe.
6. General procedures for aza-double Michael reactions. To a
mixture of 1 (1.0 equiv.), 2 (1.0 equiv.), and NEt3 (0.7
equiv.) in 1,2-dichloroethane (1 M solution for 1) was
slowly added TBSOTf (1.2 equiv.) at ambient tempera-