Paper
RSC Advances
group of e took place to produce f. Finally, f was protonated, 16 Y. Lin, A. M. Rao, B. Sadanadan, E. A. Kenik and Y. P. Sun, J.
cyclized and dehydrated to give N-aryl pyrrole as a desired
Phys. Chem., 2002, 106, 1294.
product.
17 G. T. Lewis, G. R. Nowling, R. F. Hicks and Y. Cohen,
Langmuir, 2007, 23, 10756.
18 D. Shao, Z. Jiang, X. Wang, J. Li and Y. Meng, J. Phys. Chem.,
2009, 113, 861.
Conclusion
19 Z. Hou, B. Cai, H. Liu and D. Xu, Carbon, 2008, 46, 405.
20 Y. C. Xing, L. Li, C. C. Chusuei and R. V. Hull, Langmuir,
2005, 21, 9.
21 H. Naeimi, A. Mohajeri, L. Moradi and A. M. Rashidi, Appl.
Surf. Sci., 2009, 256, 631–635.
22 G. S. Duesberg, R. Graupner, P. Downes, A. Minett, L. Ley,
S. Roth and N. Nicoloso, Synth. Met., 2004, 142, 263–266.
23 Y. Wang, Z. Iqbal and S. Mitra, J. Am. Chem. Soc., 2006, 128,
95.
24 H. Yu, Y. Jin, Z. Li, F. Peng and H. Wang, J. Solid State Chem.,
2008, 181, 432.
In this research, the synthesis of N-aryl pyrroles using 2,5-
dimethoxy tetrahydrofuran with different primary aromatic
amines was described. This reaction was performed in the
presence of a catalytic amount of MWCNTs–SO3H (0.04 g) under
thermal conditions. The corresponding products were obtained
in excellent yields, high purity and short reaction times. The
products were conrmed by physical and spectroscopic data
such as their melting point, FTIR, 1H NMR, 13C NMR
spectroscopy.
Acknowledgements
25 R. F. Alamdari, M. Golestanzadeh, F. Agend and N. Zekri,
Can. J. Chem., 2013, 91, 982–991.
26 M. M. Doroodmand, S. Sobhani and A. Ashoori, Can. J.
Chem., 2012, 90, 701–707.
The authors are grateful to the University of Kashan for sup-
porting this work by grant number 159148/52.
27 J. M. Muchowski, Adv. Med. Chem., 1992, 1, 109.
28 O. A. Tarasova, N. A. Nedolya, V. Y. Vvedensky, L. Brandsma
and B. A. Tromov, Tetrahedron Lett., 1997, 38, 7241.
References
1 Y. Wang, Z. Iqbal and S. V. Malhotra, Chem. Phys. Lett., 2005, 29 B. M. Trost and G. A. Doherty, J. Am. Chem. Soc., 2000, 122,
402, 96–101.
3801.
2 M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, 30 M. Artico, R. Silvestri, S. Massa, A. G. Loi, S. Corrias, G. Piras
E. Haroz, C. Kuper, J. Tour, K. D. Ausman and R. E. Smalley,
Chem. Phys. Lett., 2001, 342, 265–271.
3 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean,
and P. L. Colla, J. Med. Chem., 1996, 39, 522.
31 Y. Fang, D. Leysen and H. C. Ottenheijm, Synth. Commun.,
1995, 25, 1857.
S. R. Lustig, R. E. Richardson and N. G. Tassi, Nat. Mater., 32 N. Azizi, A. Khajeh-Amiri, H. Ghafuri, M. Bolourtchian and
2003, 2, 338. M. R. Saidi, Synlett, 2009, 14, 2245.
4 E. T. Michelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, 33 M. Abid, L. Teixeira and B. Torok, Tetrahedron Lett., 2007, 48,
J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge and
J. L. Margrave, J. Phys. Chem., 1999, 103, 4318.
5 J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon,
4047.
34 R. Sridhar, B. Srinivas, V. P. Kumar, V. P. Reddy, A. V. Kumar
and K. R. Rao, Adv. Synth. Catal., 2008, 350, 1489.
H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley 35 H. Naeimi and S. Mohamadabadi, Dalton Trans., 2014, 43,
and R. C. Haddon, J. Phys. Chem., 2001, 105, 2525. 12967–12973.
6 V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, 36 R. Ghahremanzadeh, Z. Rashid, A.-H. Zarnani and
M. Holzinger and A. Hirsch, J. Am. Chem. Soc., 2002, 124, 760. H. Naeimi, Dalton Trans., 2014, 43, 15791–15797.
7 J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, 37 K. C. Miles, S. M. Mays, B. K. Southerland, T. J. Auvil and
R. E. Smalley and J. M. Tour, J. Am. Chem. Soc., 2001, 123,
6536.
8 F. Pompeo and D. E. Resasco, Nano Lett., 2002, 2, 369.
D. M. Ketcha, ARKIVOC, 2009, xiv, 181–190.
38 H. J. Jung, L. Chang Kiu and Y. Ji Sook, J. Heterocycl. Chem.,
2000, 37, 15–24.
9 H. Peng, L. B. Alemany, J. L. Margrave and 39 Y. Haitao, X. Chao, M. Zhiwei and C. Ruyu, Eur. J. Org. Chem.,
V. N. Khabashesku, J. Am. Chem. Soc., 2003, 125, 15174. 2011, 18, 3353–3360.
10 K. A. Williams, P. T. M. Veenhuizen, B. G. de la Torre, 40 F. Ferenc, F. Katalin, T. Angelika and T. Laszlo, Tetrahedron,
R. Eritja and C. Dekker, Nature, 2002, 420, 761. 1997, 53, 4883–4888.
11 I. D. Rosca, F. Watari, M. Uo and T. Akasaka, Carbon, 2005, 41 Y. Chao-Wu, H. Chen-Wei, C. Ji-Wang and C. Grace, Org.
43, 3124.
Lett., 2012, 14, 3688–3691.
12 V. Datsyuk, M. Kalayva, K. Papagelis, J. Parthenios, D. Tasis, 42 R. Katla, M. S. Narayana and N. Y. V. Durga, Synth. Commun.,
A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 2008, 46, 833.
2012, 42, 2471–2477.
13 A. Eitan, K. Jiang, R. Andrews and L. S. Schadler, Chem. 43 Z. Rui, X. Lixin, W. Xinyan, C. Chuanjie, S. Deyong and
Mater., 2003, 15, 3198. H. Yuefei, Adv. Synth. Catal., 2008, 350, 1253–1257.
14 D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard and Y. P. Sun, 44 C. Weiqiang and W. Jianhui, Organometallics, 2013, 32,
Macromolecules, 2002, 35, 35.
1958–1963.
15 B. Z. Tang and H. Y. Xu, Macromolecules, 1999, 32, 2569.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 76221–76228 | 76227