Please do not adjust margins
Dalton Transactions
Page 4 of 6
COMMUNICATION
Journal Name
the previously reported -1,2-peroxo-dDifOerI:r1ic0.1s0p3e9/cCie9sD.T0B4a5s5e1dA
on detailed kinetic studies, a plausible mechanism has been
proposed for both systems, and the relative reactivity values
have been discussed in details. Studies on the oxidation of
hydrocarbons as further evidence for the formation of 1a
including DFT calculations are in progress.
Table 1. Rate constants and activation parameters for the
reaction of 1 and 2 towards aldehydes and phenols.
[a]
Substrate/
Complex
k2
H‡
[kJmol-1]
S‡
[Jmol-1K-1]
G‡
[kJmol-1]
[M-1s-1]
TBA/1
2.96±0.15
2.34±0.10
2.39±0.06
0.59
21±1
27±1
28±1
42
-163±3
-144±5
-138±3
-98
69±2
69±3
69±2
71
CCA/1
PhCHO/1
PhCHO/213b
PAA/1
+0.48
+0.67
Notes and references
Conflicts of interest: There are no conflicts of interest to
declare.
§ This work was supported by a grant from The Hungarian
National Research Fund (OTKA) K108489 and GINOP-2.3.2-15-
2016-00049.
0.95±0.06
0.04
18±1
52
-181±2
-87
72±1
77
PAA/213b
PA/1
0.77±0.03
0.68±0.04
0.002
29±2
25±1
72
-145±6
-162±5
-34
72±4
73±2
82
1
2
P. Nordlund, P. Reichard, Annu. Rev. Biochem., 2006, 75, 681.
T. M. Makris, V. V. Vu, K. K. Meier, A. J. Komor, B. S. Rivard,
E. Münck, L. Que, Jr., J. D. Lipscomb, J. Am. Chem. Soc., 2015,
137, 1608.
PPA/1
PPA/213b
DTBPH/1
DTBPH/213a
3
(a) Z. Han, N. Sakai, L. H. Boettger, S. Klinke, J. Hauber, A. X.
Trautwein, R. Hilgenfeld, Structure 2015, 23, 882; (b) V. V.
Vu, J. P. Emerson, M. Martinho, Y. S. Kim, E. Münck, M. H.
Park, L. Que, Jr., Proc. Nat. Acad. Sci. U.S.A., 2009, 106,
14814; (c) M. H. Park, J. Biochem., 2006, 139, 161.
(a) B. J. Wallar, J. D. Lipscomb, Chem. Rev., 1996, 96, 2625;
(b) C. E. Tinberg, S. J. Lippard, Acc. Chem. Res., 2011, 44, 280.
(a) A. D. Bochevarov, J. Li, W. J. Song, R. A. Friesner, S. J.
Lippard, J. Am. Chem. Soc., 2011, 133, 7384; (b) L. M.
Newman, L. P. Wackett, Biochemistry 1995, 34, 14066; (c) J.
M. Studts, K. H. Mitchell, J. D. Pikus, K. McClay, R. J. Steffan,
B. G. Fox, Protein Expr. Purif., 2000, 20, 58; (d) W. J. Song, R.
K. Behan, S. G. Naik, B. H. Huynh, S. J. Lippard, J. Am. Chem.
Soc., 2009, 131, 6074.
0.40±0.01
-0.62
-0.71
27±4
-175±14
79±8
64
-108
96
aIn CH3CN at 10 ºC; k2 = (kobs – ksd) / [S] from –d[1]/dt = kobs [1]
= (ksd + k2 [S])[1] (Table S1-S9, ESI).
4
5
(Fig. 3B), is typical for the Baeyer-Villiger mechanism, where
the migratory ability on the Criegee intermediate is ranked
tertiary (3˚) > secondary (2˚) > primary (1˚). The more electron-
rich (most-substituted) alkyl group migrates in preference.,
which can be explained by the buildup of positive charge in the
transition state for breakdown of the Criegee intermediate.19
These results above suggest that in the case of
benzaldehydes the nucleophilic attack of the peroxide on the
aldehyde C-atom, while in the case of the investigated aryl-
alkyl and alkyl aldehydes the Criegee-rearrangement can be
postulated as rate-determining step. Based on kinetic and
activation parameters presented herein demonstrate that the
-oxo--1,2-peroxo-diferric species, 1 is much more reactive
than the -1,2-peroxo-diferric species, 2 in the deformylation
reactions (Table 1); e.g., the relative rate is 24 for PAA (ΔΔG‡ =
5 kJ mol-1), and significantly larger for PPA (krel = 340 with ΔΔG‡
= 9 kJ mol-1). Based on the temperature dependence of the
reaction rates of the investigated formylation reactions we
have also found that the values of -TΔS‡ in the studied
temperature range, were larger than ΔH‡, indicating an
6
7
(a) A. Trehoux, J.-P. Mahy, F. Avenier, Coord. Chem. Rev.,
2016, 322, 142; (b) A. J. Jasniewski, L. Que, Jr. Chem. Rev.,
2018, 118, 2554.
(a) A. Schirmer, M. A. Rude, X. Li, E. Popova, S. B. del
Cardayre, Science 2010, 329, 559; (b) N. Li, W.-C. Chang, D.
M. Warui, S. J. Booker, C. Krebs, J. M. Bollinger, Biochemistry
2012, 51, 7908; (c) C. Krebs, J. M. Bollinger, Jr., S. J. Booker,
Curr. Opin. Chem. Biol., 2011, 15, 291; (d) C. Jia, M. Li, J. Li, J.
Zhang, H. Zhang, P. Cao, X. Pan, X. Lu, W. Chang, Protein.
Cell., 2015, 6, 55.
8
9
(a) T. Abe, Y. Morimoto, T. Tano, K. Mieda, H. Sugimoto, N.
Fujieda, T. Ogura, S. Itoh, Inorg. Chem., 2014, 53, 8786; (b) T.
Tano, Y. Okubo, A. Kunishita, M. Kubo, H. Sugimoto, N.
Fujieda, T. Ogura, S. Itoh, Inorg. Chem., 2013, 52, 10431.
(a) S. Hong, K. D. Sutherlin, J. Park, E. Kwon, M. A. Siegler, E.
I. Solomon, W. Nam, Nat. Commun., 2014, 5, 5440; (b) K.
Ray, F. F. Pfaff, B. Wang, W. Nam, J. Am. Chem. Soc., 2014,
136, 13942.
entropy-controlled reaction (Fig. 3C, Fig. S9, ESI), contrary to 10 X. Shan, L. Que, Jr., Proc. Natl. Acad. Sci., 2005, 102, 5340.
11 M. J. Park, J. Lee, Y. Suh, J. Kim, W. Nam, J. Am. Chem. Soc.,
2006, 128, 2630.
12 A. M. Magherusan, S. Kal, D. N. Nelis, L. M. Doyle, E. R.
Farquhar, L. Que, Jr., A. R. McDonald, Angew. Chem. Int. Ed.
2019, 58, 5718.
that observed for 2 (Table 1, enthalpy-controlled reaction with
ΔH‡ > TΔS‡). Arbitrary fitting of a linear relationship to
available entropy and enthalpy data yields ΔH‡ = 63.4 kJ mol-1
at the intercept, which is little bit smaller than that was
obtained for the deformylation reaction of 2. Furthermore, the 13 (a) M. I. Szávuly, M. Surducan, E. Nagy, M. Surányi, G. Speier,
R. Silaghi-Dumitrescu, J. Kaizer, Dalton Trans., 2016, 45,
14709; (b) B. Kripli, F. V. Csendes, P. Török, G. Speier, J.
Kaizer, Chemistry - A European Journal, 2019, 25, 14290; (c)
S. V. Kryatov, S. Taktak, I. V. Korendovych, E. V. Rybak-
Akimova, J. Kaizer, S. Torelli, X. Shan, S. Mandal, V. L.
MacMurdo, A. Mairata i Payeras, L. Que, Jr., Inorg. Chem.,
2005, 44, 85; (d) M. A. Cranswick, K. K. Meier, X. Shan, A.
Stubna, J. Kaizer, M. P. Mehn, E. Münck, L. Que, Jr., Inorg.
calculated Gibbs energy values correlate very well with the
reaction rates (Fig. 3D).
Efforts have been made to find strong evidence for the
ambiphilic behavior of non-heme peroxo-diferric intermediate.
We have found that the -oxo--1,2-peroxo-diferric
intermediate is capable of deformylating aldehydes via
nucleophilic, and able to oxidize phenols via an electrophilic
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins