COMMUNICATIONS
Experimental Section
Functionalized Tellurium(ii) Thiolates:
Tellurium Bis(2-hydroxyethanethiolate)
Lithium powder (0.100 g, 14.4 mmol) was added to a solutionof 2 (1.23 g,
II
1.28 mmol) in DME (70 mL). The initially black mixture turned red and
Hydrate, the First H O ± Te Complex**
2
was stirred for five hours at room temperature. Insoluble compounds were
filtered off and the solution was treated with 1-bromo-2,4,6-triisopropyl-
benzene (0.220 g, 0.78 mmol) at À188C. Over a period of tenhours the
solutionwas slowly warmed to room temperature. DME was removed and
the precipitate was dissolved in n-hexane (10 mL). Renewed filtration,
concentration to a volume of 3 mL, and cooling to À308C afforded
Holger Fleischer* and Dieter Schollmeyer
Tellurium(ii) thiolates, Te(SR) (R alkyl, aryl) are of both
2
[1±5]
[6]
chemical
and biochemical interest. Thiolates Te(SR) , in
2
which R contains a functional group, have not yet been
described, despite their potential interest for synthetic and
structural chemistry, for example the synthesis of precursors
for the productionof HgTe or CdTe semico dn uctors by
chemical vapor deposition(CVD). We report here the
synthesis of the first representative of this class of compounds
and the crystal structure of its monohydrate.
greenish-black crystals of 6 (0.103 g; 11% yield). M.p. 175 ± 1828C.
1
H NMR (500 MHz, [D
H, J 6.6 Hz), 0.29 (d, 6H, J 6.6 Hz), 0.35 (d, 6H, J 6.6 Hz), 1.05 ± 1.17
m, 48H), 1.21 (d, 12H, J 6.6 Hz), 1.42 (d, 6H, J 6.6 Hz), 1.51 (d, 6H,
J 6.6 Hz), 1.56 (d, 6H, J 6.6 Hz), 1.60 (d, 6H, J 6.6 Hz), 2.70 (sept,
H), 2.75 (sept, 2H), 2.84 (sept, 2H), 3.09 (sept, 2H), 3.24 (sept, 2H), 3.35
sept, 2H), 4.11 (sept, 2H), 4.27 (sept, 2H), 6.55 (s, 2H), 6.76 (s, 2H), 6.78
8
]THF, 258C): d 0.02 ± 0.10 (m, 6H), 0.19 (d,
6
(
4
(
(
1
3
s, 2H), 6.80 (s, 2H), 6.94 (s, 2H), 7.11 (s, 2H); C NMR (125 MHz,
[
D
8
]THF, 258C): d 14.39, 23.49, 23.93, 24.11, 24.20, 24.28, 24.36, 24.51,
Reactionof TeO 2 with HOCH CH SH yields Te(SCH
2-
2
2
2
1
1
5
9
7.07, 32.51, 32.51, 34.99, 35.04, 35.27, 35.39, 37.99, 39.93, 122.14, 122.33,
22.64, 122.76, 123.52, 123.69, 142.00, 144.52, 148.05, 149.41, 150.47, 151.21,
52,45, 153.58, 154.12, 154.59; UV/Vis (n-hexane): lmax (e) 405 (10450),
60 (12750) nm; C,H analysis: calcd: C 71.56, H 9.21; found: C 71.30, H
.03.
CH OH) by a reductive elimination according to Equa-
2
2
tion(1). [ With exclusionof light, solutio sn of Te(SCH 2-
7]
TeO
2
4HSCH
2
CH
2
OH
Te(SCH
!
2
CH
2
OH)
2
(SCH
2
CH
2
OH)
2
2H
2
O
(1)
Received: June 13, 2000 [Z15259]
CH OH) inCDCl are stable at room temperature for several
2
2
3
1
days. Onthe other hand, H NMR spectroscopy reveals rapid
decomposition and the formation of Te and (SCH CH OH) ,
2
2
2
[
1] M. Stürmann, W. Saak, H. Marsmann, M. Weidenbruch, Angew.
Chem. 1999, 111, 145 ± 147; Angew. Chem. Int. Ed. 1999, 38, 187 ± 189.
2] M. Stürmann, W. Saak, M. Weidenbruch, K. W. Klinkhammer, Eur. J.
Inorg. Chem. 1999, 579 ± 582.
whensuch a solutionis irradtiated with UV light ( l 254 nm).
The decompositionobeys first-order ki ne tics, suggesti ng a
monomolecular mechanism for the photolysis. Preliminary
results show that the OH groups of Te(SCH CH OH) canbe
[
[
[
[
3] For recent reviews see a) P. P. Power, Chem. Rev. 1999, 99, 3463 ± 3502;
b) M. Weidenbruch, Eur. J. Inorg. Chem. 1999, 373 ± 381.
2
2
2
acetylated, and a more comprehensive account of its chem-
istry will be published indue course.
4] M. Weidenbruch, S. Willms, W. Saak, G. Henkel, Angew. Chem. 1997,
1
06, 2612 ± 2613; Angew. Chem. Int. Ed. Engl. 1997, 36, 2503 ± 2504.
5] J. Park, S. A. Batcheller, S. Masamune, J. Organomet. Chem. 1989, 367,
9 ± 45.
The complex Te(SCH CH OH) ´ H O was obtained at
2
2
2
2
3
À458C from anetha on lic solutionof Te(SCH
CH OH)2
2
The Te ´´´ O distance
2
[
[
6] W. Ando, H. Itoh, T. Tsumuraya, Organometallics 1989, 8, 2759 ± 2766.
7] H. Schäfer, W. Saak, M. Weidenbruch, Organometallics 1999, 18,
containing traces of water.[
8]
(
249.5(10) pm) is in the range of known intramolecular dative
3
159 ± 3163.
[
8] Crystal structure analyses: Stoe-IPDS area detector, MoKa radiation,
graphite-monochromator; T 193(2) K. The structures were solved
by direct methods and refined by full-matrix least-squares techniques
O !Te interactions, for example 223.7(8) pm in 2-benzami-
[11]
dyl(bromo)tellurium, and 324.4(2) pm in 4-methoxyphenyl-
O-methylxanthogenato)tellurium.[12] The sum of the bond
(
2
[9]
against F . Hydrogen atoms were placed in calculated positions and
angles at the tellurium center is approximately 3108; thus, the
configuration of the three-coordinate Te atom can be
described as distorted trigonal pyramidal. In the solid state,
Te(SCH CH OH) molecules form chains through O3ÀH3 ´´´
refined with isotropic temperature factors; all other atoms were
Å
4
refined anisotropically. 6: C90H138Ge ´ DME, triclinic, space group P1,
a 1576.46(7), b 1579.47(5), c 1991.89(6) pm, a 78.570(4), b
6
3
7
1
2.713(4), g 79.400(5)8, Z 2, V 4600.2(3) Â 10 pm ,
1
calcd
2
2
2
À3
.155 gcm , 2qmax 528. Of 56147 measured reflections, 16544 were
O6' hydrogenbo nd s (Figure 1); the structural parameters of
independent, and 10596 observed for I > 2s(I). R1 0.0460, wR2
.1007 (all data) for 901 parameters. 3: C87 LiO , monoclinic,
space group C2/c, a 2116.74(5), b 1800.15(7), c 2537.82(6) pm,
[13]
the hydrogenbo nd are similar to those inice.
Adjacent
0
H
145Ge
4
6
chains are linked through short OÀH ´´´ S hydrogenbo nd s (cf
6
3
À3
b 113.395(2)8, Z 4, V 8875.2(5) Â 10 pm , 1calcd 1.186 gcm
,
reference [13]).
2
q
max 528. Of 32739 measured reflections, 8135 were independent,
The strong intermolecular interactions lead to significant
differences between the molecular structure of Te(SCH2-
and 4949 observed for I > 2s(I). R1 0.0538, wR2 0.1553 (all data)
for 429 parameters. Crystallographic data (excluding structure factors)
for the structures reported inthis paper have beendeposited with the
Cambridge Crystallographic Data Centre as supplementary publica-
tion no . CCDC-145476 ( 6) and CCDC-145477 (3). Copies of the data
canbe obtai ne d free of charge onapplicationto CCDC, 12 U ni on
Road, Cambridge CB21EZ, UK (fax: (44)1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk).
CH OH) ´ H O optimized by ab initio methods and its
2
2
2
structure inthe crystal. Inparticular, the Te ÀO bond
[
*] Dr. H. Fleischer
Institut für Anorganische Chemie und Analytische Chemie
Johannes-Gutenberg-Universität Mainz
Duesbergweg 10 ± 14, 55099 Mainz (Germany)
Fax : (49)6131-3923351
[
9] G. M. Sheldrick, SHELXL-97, program for crystal structure refine-
ment, Universität Göttingen, 1997.
[
[
[
10] M. M. Olmstead, L. Pu, R. S. Simons, P. P. Power, Chem. Commun.
997, 1595 ± 1595.
11] Review: K. M. Baines, W. G. Stibbs, Adv. Organomet. Chem. 1996, 39,
75 ± 324.
E-mail: fleische@mail.zdv.uni-mainz.de
1
Dr. D. Schollmeyer
Institut für Organische Chemie
Johannes-Gutenberg-Universität (Germany)
2
12] M. Kira, T. Iwamoto, T. Maruyama, C. Kabuto, H. Sakurai, Organo-
metallics 1996, 15, 3767 ± 3769.
[**] This work was supported by the Fonds der Chemischen Industrie.
Angew. Chem. Int. Ed. 2000, 39, No. 20
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3920-3705 $ 17.50+.50/0 3705