Peroxynitrite Formed from HNO Reaction with Molecular Oxygen
and Ohshima, H. (1999) Cytotoxicity and site-specific DNA damage in-
moglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aque-
ous-solution. J. Am. Chem. Soc. 107, 7982–7986
Ϫ
duced by nitroxyl anion (NO ) in the presence of hydrogen peroxide:
Implications for various pathophysiological conditions. J. Biol. Chem. 274, 38. Doyle, M. P., Mahapatro, S. N., Broene, R. D., and Guy, J. K. (1988) Oxi-
2
0909–20915
dation and reduction of hemoproteins by trioxodinitrate (II): the role of
nitrosyl hydride and nitrite. J. Am. Chem. Soc. 110, 593–599
39. Suarez, S. A., Marti, M. A., De Biase, P. M., Estrin, D. A., Bari, S. E., and
Doctorovich, F. (2007) HNO trapping and assisted decomposition of ni-
troxyl donors by ferric hemes. Polyhedron 26, 4673–4679
1
1
7. Pagliaro, P. (2003) Differential biological effects of products of nitric oxide
(
NO) synthase: it is not enough to say NO. Life Sci. 73, 2137–2149
8. Pufahl, R. A., Wishnok, J. S., and Marletta, M. A. (1995) Hydrogen perox-
ide-supported oxidation of N -hydroxy-L-arginine by nitric oxide syn-
thase. Biochemistry 34, 1930–1941
40. Samuni, U., Samuni, Y., and Goldstein, S. (2010) On the distinction be-
tween nitroxyl and nitric oxide using nitronyl nitroxides. J. Am. Chem. Soc.
132, 8428–8432
1
9. Hobbs, A. J., Fukuto, J. M., and Ignarro, L. J. (1994) Formation of free nitric
oxide from l-arginine by nitric oxide synthase: direct enhancement of
generation by superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A. 91, 41. Samuni, Y., Samuni, U., and Goldstein, S. (2013) The use of cyclic nitrox-
1
0992–10996
ide radicals as HNO scavengers. J. Inorg. Biochem. 118, 155–161
42. Miranda, K. M., Espey, M. G., Yamada, K., Krishna, M., Ludwick, N., Kim,
S., Jourd’heuil, D., Grisham, M. B., Feelisch, M., Fukuto, J. M., and Wink,
D. A. (2001) Unique oxidative mechanisms for the reactive nitrogen oxide
species, nitroxyl anion. J. Biol. Chem. 276, 1720–1727
2
2
2
0. Sharpe, M. A., and Cooper, C. E. (1998) Reactions of nitric oxide with
mitochondrial cytochrome c: a novel mechanism for the formation of
nitroxyl anion and peroxynitrite. Biochem. J. 332, 9–19
1. Saleem, M., and Ohshima, H. (2004) Xanthine oxidase converts nitric
oxide to nitroxyl that inactivates the enzyme. Biochem. Biophys. Res. Com- 43. Kirsch, M., and de Groot, H. (2002) Formation of peroxynitrite from re-
mun. 315, 455–462
action of nitroxyl anion with molecular oxygen. J. Biol. Chem. 277,
2. Poderoso, J. J., Carreras, M. C., Sch o¨ pfer, F., Lisdero, C. L., Riob o´ , N. A.,
13379–13388
Giulivi, C., Boveris, A. D., Boveris, A., and Cadenas, E. (1999) The reaction 44. Miranda, K. M., Yamada, K., Espey, M. G., Thomas, D. D., DeGraff, W.,
of nitric oxide with ubiquinol: kinetic properties and biological signifi-
cance. Free Radic. Biol. Med. 26, 925–935
Mitchell, J. B., Krishna, M. C., Colton, C. A., and Wink, D. A. (2002)
Further evidence for distinct reactive intermediates from nitroxyl and
peroxynitrite: effects of buffer composition on the chemistry of Angeli’s
salt and synthetic peroxynitrite. Arch. Biochem. Biophys. 401, 134–144
45. Donald, C. E., Hughes, M. N., Thompson, J. M., and Bonner, F. T. (1986)
2
3. Kirsch, M., B u¨ scher, A. M., Aker, S., Schulz, R., and de Groot, H. (2009)
New insights into the S-nitrosothiol-ascorbate reaction: the formation of
nitroxyl. Org. Biomol. Chem. 7, 1954–1962
2
4. Wong, P. S., Hyun, J., Fukuto, J. M., Shirota, F. N., DeMaster, E. G., Shoe-
man, D. W., and Nagasawa, H. T. (1998) Reaction between S-nitrosothiols
Photolysis of the NϭN bond in trioxodinitrate: reaction between triplet
Ϫ
NO and O to form peroxonitrite. Inorg. Chem. 25, 2676–2677
2
and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Bio- 46. Samuni, A., and Goldstein, S. (2011) One-electron oxidation of acetohy-
chemistry 37, 5362–5371
droxamic acid: the intermediacy of nitroxyl and peroxynitrite. J. Phys.
Chem. A 115, 3022–3028
2
2
2
5. Mao, G. J., Zhang, X. B., Shi, X. L., Liu, H. W., Wu, Y. X., Zhou, L. Y., Tan,
W. H., and Yu, R. Q. (2014) A highly sensitive and reductant-resistant
fluorescent probe for nitroxyl in aqueous solution and serum. Chem. Com-
mun. (Camb.). 50, 5790–5792
47. Sikora, A., Zielonka, J., Adamus, J., Debski, D., Dybala-Defratyka, A., Mi-
chalowski, B., Joseph, J., Hartley, R. C., Murphy, M. P., and Kalyanaraman,
B. (2013) Reaction between peroxynitrite and triphenylphosphonium-
substituted arylboronic acid isomers: identification of diagnostic marker
products and biological implications. Chem. Res. Toxicol. 26, 856–867
6. Wrobel, A. T., Johnstone, T. C., DelizLiang, A., Lippard, S. J., and Rivera-
Fuentes, P. (2014) A fast and selective near-infrared fluorescent se-nsor
for multicolor imaging of biological nitroxyl (HNO). J. Am. Chem. Soc. 48. Sikora, A., Zielonka, J., Lopez, M., Dybala-Defratyka, A., Joseph, J., Mar-
136, 4697–4705
cinek, A., and Kalyanaraman, B. (2011) Reaction between peroxynitrite
and boronates: EPR spin-trapping, HPLC Analyses, and quantum me-
chanical study of the free radical pathway. Chem. Res. Toxicol. 24,
687–697
7. Shafirovich, V., and Lymar, S. V. (2002) Nitroxyl and its anion in aqueous
solutions: Spin states, protic equilibria, and reactivities toward oxygen and
nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 99, 7340–7345
2
8. Shafirovich, V., and Lymar, S. V. (2003) Spin-forbidden deprotonation of 49. Sikora, A., Zielonka, J., Lopez, M., Joseph, J., and Kalyanaraman, B. (2009)
aqueous nitroxyl (HNO). J. Am. Chem Soc. 125, 6547–6552
9. Hughes, M. N., and Cammack, R. (1999) Synthesis, chemistry, and appli-
cations of nitroxyl ion releasers sodium trioxodinitrate or Angeli’s salt and
Piloty’s acid. Methods Enzymol. 301, 279–287
Direct oxidation of boronates by peroxynitrite: mechanism and implica-
tions in fluorescence imaging of peroxynitrite. Free Radic. Biol. Med. 47,
1401–1407
2
50. Zielonka, J., Sikora, A., Joseph, J., and Kalyanaraman, B. (2010) Peroxyni-
trite is the major species formed from different flux ratios of co-generated
nitric oxide and superoxide: direct reaction with boronate-based fluores-
cent probe. J. Biol. Chem. 285, 14210–14216
3
3
0. Fukuto, J. M., Bianco, C. L., and Chavez, T. A. (2009) Nitroxyl (HNO)
signaling. Free Radic. Biol. Med. 47, 1318–1324
1. Liochev, S. I., and Fridovich, I. (2003) The mode of decomposition of
Angeli’s salt (Na N O ) and the effects thereon of oxygen, nitrite, super- 51. Zielonka, J., Sikora, A., Hardy, M., Joseph, J., Dranka, B. P., and Kalyanara-
2
2
3
oxide dismutase, and glutathione. Free Radic. Biol. Med. 34, 1399–1404
2. Fukuto, J. M., Cisneros, C. J., and Kinkade, R. L. (2013) A comparison of
the chemistry associated with the biological signaling and actions of ni-
troxyl (HNO) and nitric oxide (NO). J. Inorg. Biochem. 118, 201–208
3. Murphy, M. E., and Sies, H. (1991) Reversible conversion of itroxyl anion
to nitric-oxide by superoxide-dismutase. Proc. Natl. Acad. Sci. U.S.A. 88,
man, B. (2012) Boronate probes as diagnostic tools for real time monitor-
ing of peroxynitrite and hydroperoxides. Chem. Res. Toxicol. 25,
1793–1799
3
3
3
52. Zielonka, J., Zielonka, M., Sikora, A., Adamus, J., Joseph, J., Hardy, M.,
Ouari, O., Dranka, B. P., and Kalyanaraman, B. (2012) Global profiling of
reactive oxygen and nitrogen species in biological systems: high-through-
put real-time analyses. J. Biol. Chem. 287, 2984–2995
1
0860–10864
4. Liochev, S. I., and Fridovich, I. (2001) Copper, zinc superoxide dismutase
53. Sieracki, N. A., Gantner, B. N., Mao, M., Horner, J. H., Ye, R. D., Malik,
A. B., Newcomb, M. E., and Bonini, M. G. (2013) Bioluminescent detec-
tion of peroxynitrite with a boronic acid-caged luciferin. Free Radic. Biol.
Med. 61, 40–50
Ϫ
as a univalent NO oxidoreductase and as a dichlorofluorescin peroxi-
dase. J. Biol. Chem. 276, 35253–35257
Ϫ
3
5. Liochev, S. I., and Fridovich, I. (2002) Nitroxyl (NO ): a substrate for
superoxide dismutase. Arch. Biochem. Biophys. 402, 166–171
54. Lippert, A. R., Van de Bittner, G. C., and Chang, C. J. (2011) Boronate
oxidation as a bioorthogonal reaction approach for studying the chemistry
of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804
3
6. Miranda, K. M., Paolocci, N., Katori, T., Thomas, D. D., Ford, E., Bart-
berger, M. D., Espey, M. G., Kass, D. A., Feelisch, M., Fukuto, J. M., and
Wink, D. A. (2003) A biochemical rationale for the discrete behavior of 55. Morrison, D. E., Issa, F., Bhadbhade, M., Groebler, L., Witting, P. K., Kas-
nitroxyl and nitric oxide in the cardiovascular system. Proc. Natl. Acad.
Sci. U.S.A. 100, 9196–9201
siou, M., Rutledge, P. J., and Rendina, L. M. (2010) Boronated phospho-
nium salts containing arylboronic acid, closo-carborane, or nido-carbo-
rane: synthesis, X-ray diffraction, in vitro cytotoxicity, and cellular uptake.
3
7. Bazylinski, D. A., and Hollocher, T. C. (1985) Metmyoglobin and methe-
3
5580 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 289•NUMBER 51•DECEMBER 19, 2014