SNAr with Amines on Nitrothiophenes in RTILs
that is completely different from that offered by conventional
solvents, thus possibly modifying the mechanism or even
changing the outcome of a reaction.
of the comparison with the results in a conventional solvent.
For example, solvation effects of some RTILs containing the
[TF2N] anion, similar to those of acetonitrile, have been claimed
studying the keto-enol tautomerism of 2-nitrocyclohexanone.12
According to this approach, we decided to perform a kinetic
study in RTILs of the nucleophilic aromatic substitution (SN-
Ar), an organic reaction well-investigated in conventional
organic solvents. Nucleophilic substitutions (aromatic as well
as aliphatic) represent “one of the most important reactions”
“and can lead to a wide variety of new functional groups”.13
For years some of us have been interested in the mechanistic
aspects of this reaction in conventional organic solvents.14
Furthermore, it is well-known that the process is affected by
the nature of the solvent used, and it has been used frequently
as a probe to better understand the microscopic properties of
solvent systems.15
Recent studies have demonstrated that changes in the nature
of the cation and/or of the counterion bring about notable
variations in the properties (e.g., electrophilicity or nucleophi-
licity) of the reacting molecules8 as well as in the mechanism
of reaction.9 Accordingly, we recently proposed a shift from
the E1cB (in MeOH)10a to the E2 mechanism (in RTILs)10b for
the amine-promoted dehydrobromination of the 1,1,1-tribromo-
2,2-bis(phenyl-substituted)ethanes in ionic liquids.
Despite the enormous interest in RTILs, their microscopic
properties are not fully understood. Several reports have
attempted to determine empirically some of their solvent
parameters.11 Completely different values have been obtained,
however, as a result of the different natures of the molecular
probes used and to the lack of a single probe able to account
for different intermolecular forces and, thus, to give a reliable
polarity scale.
Results and Discussion
Choice of Substrates and Nucleophiles. We herein report
on the aromatic amination of some 2-L-5-nitrothiophenes (1),
para-like derivatives, by the action of three secondary cyclic
amines, namely, pyrrolidine (Pyr), piperidine (Pip), and mor-
pholine (Mor; Chart 1). These amines show different nucleo-
philicities and/or structures that could cause specific interactions
with organized solvents such as ionic liquids. Four different
leaving groups (L ) Br, OMe, OC6H5, and OC6H4-4-NO2)
were chosen to verify their leaving group ability order.
We also examined the behavior of an ortho-like derivative,
namely, 2-bromo-3-nitrothiophene (2a), which gives peculiar
intramolecular interactions in the transition state (TS), to gain
information about the dependence of such interactions on the
nature of the medium used.
The reaction was followed spectrophotometrically at not less
than six amine concentrations (0.00869-0.0350 M) and over a
significant temperature range (293-313 K), determining the
thermodynamic parameters, which are a useful instrument in
studying reagent-solvent interactions.
Three ionic liquids ([bmim][BF4], [bmim][PF6], and [bm2-
im][BF4], where bmim ) 1-butyl-3-methylimidazolium and bm2-
im ) 1-butyl-2,3-dimethylimidazolium) were chosen because
of the different properties of their cations and anions. In
An alternative approach, so far less investigated, is a
mechanistic study in ionic liquid solution of a classic organic
reaction to better understand their solvent properties by means
(3) (a) Sheldon, R. Chem. Commun. 2001, 2399-2407. (b) Harjani, J.
R.; Nara, S. J.; Salunkhe, M. M. Tetrahedron Lett. 2002, 43, 1127-1130.
(c) Namboodiri, V. V.; Varma, R. S. Chem. Commun. 2002, 342-343. (d)
Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.; Wiley-
VCH: Weinheim, Germany, 2003. (e) Sun, W.; Xia, C.-G.; Wang, H.-W.
Tetrahedron Lett. 2003, 44, 2409-2411. (f) Akiyama, T.; Suzuki, A.;
Fuchibe, K. Synlett 2005, 1024-1026. (g) Ranu, B. C.; Jana, R. J. Org.
Chem. 2005, 70, 8621-8624.
(4) (a) Yang, Z.; Pan, W. Enzyme Microb. Technol. 2005, 37, 19-28.
(b) Chiappe, C.; Leandri, E.; Lucchesi, S.; Pieraccini, D.; Hammock, B.
D.; Morisseau, C. J. Mol. Catal. B: Enzymol. 2004, 27, 243-248. (c) Park,
S.; Kazlauskas, R. J. Curr. Opin. Biotechnol. 2003, 14, 432-437.
(5) (a) Buzzeo, M. C.; Evans, R. G.; Compton, R. G. Chem. Phys. Chem.
2004, 5, 1107-1120. (b) Mazurkiewicz, J. H.; Innis, P. C.; Wallace, G.
G.; MacFarlane, D. R.; Forsyth, M. Synth. Met. 2003, 135-136, 31-32.
(6) (a) Mwongela, S. M.; Numan, A.; Gill, N. L.; Agraria, R. A.; Warner,
I. M. Anal. Chem. 2003, 75, 6089-6096. (b) Matsumoto, M.; Inomoto, Y.;
Kondo, K. J. Membr. Sci. 2005, 246, 77-81.
(7) (a) Lancaster, N. L.; Welton, T.; Young, G. B. J. Chem. Soc., Perkin
Trans. 2 2001, 2267-2270. (b) Chiappe, C.; Conte, V.; Pieraccini, D. Eur.
J. Org. Chem. 2002, 2831-2837. (c) Chiappe, C.; Pieraccini, D.; Saullo,
P. J. Org. Chem. 2003, 68, 6710-6715. (d) Chiappe, C.; Pieraccini, D. J.
Org. Chem. 2004, 69, 6059-6064. (e) Crowhurst, L.; Lancaster, N. L.;
Pe´rez Arlandis J. M.; Welton, T. J. Am. Chem.. Soc. 2004, 126, 11549-
11555. (f) Lancaster, N. L.; Welton, T. J. Org. Chem. 2004, 69, 5986-
5992. (g) Laali, K. K.; Sarca, V. D.; Okazaki, T.; Brock, A.; Der, P. Org.
Biomol. Chem. 2005, 3, 1034-1042. (h) Lancaster, N. L. J. Chem. Res.
2005, 413-417. (i) D’Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli,
D. J. Org. Chem. 2005, 70, 2828-2831.
(8) (a) Laali, K. K.; Gettwert, V. J. J. Org. Chem. 2001, 66, 35-40. (b)
Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281-4285.
(c) Kim, D. W.; Hong, D. J.; Seo, J. W.; Kim, H. S.; Kim, H. K.; Song, C.
E.; Chi, D. Y. J. Org. Chem. 2004, 69, 3186-3189. (d) Landini, D.; Maia,
A. Tetrahedron Lett. 2005, 46, 3961-3963.
(9) (a) Chiappe, C.; Pieraccini, D. ArkiVoc 2002, xi, 249-255. (b) Earle,
M. J.; Katdare, S. P.; Seddon, K. R. Org. Lett. 2004, 6, 707-710. (c) Shen,
H.-Y.; Yudeh, Z. M. A.; Ching, C. B.; Xia, Q. H. J. Mol. Catal. A: Chem.
2004, 212, 301-308.
(10) (a) Fontana, G.; Frenna, V.; Gruttadauria, M.; Natoli, M. C.; Noto,
R. J. Phys. Org. Chem. 1998, 11, 54-58. (b) D’Anna, F.; Frenna, V.; Pace,
V.; Noto, R. Tetrahedron 2006, 62, 1690-1698.
(11) (a) Carmichael, A. J.; Seddon, K. R. J. Phys. Org. Chem. 2000, 13,
591-595. (b) Muldoon, M. J.; Gordon, C. M.; Dunkin, I. R. J. Chem. Soc.,
Perkin Trans. 2 2001, 433-435. (c) Fletcher, K. A.; Storey, I. A.; Hendricks,
A. E.; Pandey, S.; Pandey, S. Green Chem. 2001, 3, 210-215. (d) Dzyuba,
S. V.; Bartsch, R. A. Tetrahedron Lett. 2002, 43, 4657-4659. (e) Anderson,
J. L.; Ding, J.; Welton, T.; Armstrong, D. W. J. Am. Chem. Soc. 2002,
124, 14247-14254. (f) Abraham, M. H.; Zissimos, A. M.; Huddleston, J.
G.; Willauer, H. D.; Rogers, R. D.; Acree, W. E. Ind. Eng. Chem. Res.
2003, 42, 413-418. (g) Ropel, L.; Belve`ze, L. S.; Aki, S. N. V. K.; Stadtherr,
M. A.; Brennecke, J. F. Green Chem. 2005, 7, 83-90.
(12) Angelini, G.; Chiappe, C.; De Maria, P.; Fontana, A.; Gasparrini,
F.; Pieraccini, D.; Pierini, M.; Siani, G. J. Org. Chem. 2005, 70, 8193-
8196.
(13) Brown, W. H.; Foote, C. S.; Iverson, B. L. Organic Chemistry;
Thomson Brook/Cole: Belmont, 2005; p 330.
(14) (a) Spinelli, D.; Dell’Erba, C.; Salvemini, A. Ann. Chim. (Rome,
Italy) 1962, 52, 1156-1166. (b) Spinelli, D.; Dell’Erba, C.; Guanti, G. Ann.
Chim. (Rome, Italy) 1965, 55, 1260-1266. (c) Spinelli, D.; Consiglio, G.;
Monti, T. J. Chem. Soc., Perkin Trans. 2 1975, 816-819. (d) Spinelli, D.;
Consiglio, G. J. Chem. Soc., Perkin Trans. 2 1975, 989-993. (e) Spinelli,
D.; Consiglio, G.; Noto, R. J. Heterocycl. Chem. 1977, 14, 1325-1329. (f)
Spinelli, D.; Consiglio, G.; Noto, R. J. Org. Chem. 1978, 43, 4038-4041.
(g) Consiglio, G.; Frenna, V.; Spinelli, D. Top. Heterocycl. Syst.: Synth.,
React. Prop. 1996, 1, 169-185. (h) Spinelli, D.; Consiglio, G.; Dell’Erba
C.; Novi, M. Chem. Heterocycl. Compd 1991, 44 (Part Four), 295-396.
(i) Spinelli, D.; Consiglio, G.; Dell’Erba, C.; Novi, M.; Petrillo, G. Gazz.
Chim. Ital. 1997, 127, 753-769. (j) Consiglio, G.; Frenna, V.; Guernelli,
S.; Macaluso, G.; Spinelli, D. J. Chem. Soc., Perkin Trans. 2 2002, 971-
975.
(15) (a) Terrier, F. Nucleophilic Aromatic Displacement: The influence
of the nitro group. In Organic Nitro Chemistry Series; Ferrer, H., Ed.; VCH
Publishers: New York, 1991. (b) Nudelmann, N. S. In The Chemistry of
Amino, Nitroso, Nitro and Related Groups; Patai, S., Ed.; J. Wiley & Sons,
Ltd.: London, 1996; Chapter 29. (c) Alvaro, C. E. S.; Nudelmann, N. S.
ArkiVoc 2003, x, 95-106.
J. Org. Chem, Vol. 71, No. 14, 2006 5145