nitrogens of the guanidinium group, assuming the boronic acid
bind to glucarate via the 3,4-diol (Fig. 1).9
There are literature precedents that two identical binding
units properly arranged in a synthetic receptor can be used for
the selective recognition of various targets.6d,k,l Compared with
using two identical binding units, the design and synthesis of a
synthetic receptor with two different binding sites is more
challenging. Only a few fluorescent sensors containing two
different binding sites to capture a single species have been
reported so far.11 To the best of our knowledge, compound 1 is
the first fluorescent receptor for -glucarate, which features
D
two-point interactions via boronic acid–diol complexation and
guanidinium–carboxylate recognition. The receptor can dis-
Fig. 2 Fluorescence spectra of 1 (1.0 3 1025 M) upon addition of
D
-
criminate well between
D
-glucarate and other structurally
glucarate (0, 0.01, 0.1, 1, 2, 5, 10, 20 mM) at 25 °C in 50% MeOH/0.1 M
aqueous HEPES buffer at pH 7.4, lex = 370 nm.
similar carbohydrates and the binding event results in sig-
nificant fluorescence changes. Further work utilizing the
concept of multi-point interactions for the design of sensors for
various analytes is under way.
Financial support from the National Institutes of Health
(NO1-CO-27184 and CA88343) and North Carolina Bio-
technology Center (2001ARG0016) is gratefully acknowl-
edged.
Notes and references
† Selected data for 1: Yield 55%. 1H NMR (CD3OD, 300 MHz) d 8.45–8.40
(m, 4H), 7.82–7.56 (m, 8H), 5.45 (s, 2H), 5.41 (s, 2H), 4.73 (s, 2H), 2.77 (s,
3H). MS-ESI: 427.3 (M+ + H). HRMS (ESI) calcd. for C25H27BN4O2 (M+
+
H) 427.2305; found 427.2297. Anal. calcd. for C25H27BN4O-
2·1.4(C4H10O)·2.3HCl: C, 59.78; H, 7.10; N, 9.11. Found: C, 59.82; H, 6.73;
N, 9.09%.
Fig. 3 Relative fluorescence intensity changes of (/) 1, (-) 2 and (:) 3 as
a function of
-glucarate concentration at 25 °C, 1.0 3 1025 M of 1, 2 and
D
1 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97,
1515.
3 in 50% MeOH/0.1 M aqueous HEPES buffer at pH 7.4, lex = 370 nm, lem
= 424 nm.
2 (a) C. Dwivedi, W. J. Heck, A. A. Downie, S. Larroya and T. E. Webb,
Biochem. Med. Metab. Biol., 1990, 43, 83; (b) H. J. Blumenthal, V. L.
Lucuta and D. C. Blumenthal, Anal. Biochem., 1990, 185, 286.
3 (a) Z. Walaszek, J. Szemraj, M. Narog, A. K. Adams, J. Kilgore, U.
Sherman and M. Hanausek, Cancer Detect Prev., 1997, 21, 178; (b) A.
S. Heerdt, C. W. Young and P. I. Borgen, Isr. J. Med. Sci., 1995, 31, 101;
(c) H. Abou-Issa, C. Dwivedi, R. W. Curley Jr., R. Kirkpatrick, A.
Koolemans-Beynen, F. N. Engineer, K. A. Humphries, W. el-Masry and
T. E. Webb, Anticancer Res., 1993, 13, 395.
4 (a) P. W. Trudgill and R. Widdus, Nature, 1966, 211, 1097; (b) D. R. J.
Palmer and J. A. Gerlt, J. Am. Chem. Soc., 1996, 118, 10323.
5 (a) W. Perry and M. V. Jenkins, Int. J. Clin. Pharmacol. Ther. Toxicol.,
1986, 24, 609; (b) C. A. Marsh, Anal. Biochem., 1985, 145, 266.
6 (a) J. Yoon and A. W. Czarnik, J. Am. Chem. Soc., 1992, 114, 5874; (b)
T. D. James, K. R. A. S. Sandanayake, R. Iguchi and S. Shinkai, J. Am.
Chem. Soc., 1995, 117, 8982; (c) H. Eggert, J. Frederiksen, C. Morin and
J. C. Norrild, J. Org. Chem., 1999, 64, 3846; (d) W. Yang, H. He and D.
G. Drueckhammer, Angew. Chem., Int. Ed., 2001, 40, 1714; (e) N.
DiCesare and J. R. Lakowicz, Org. Lett., 2001, 3, 3891; (f) C. J. Ward,
P. Patel and T. D. James, Org. Lett., 2002, 4, 477; (g) T. D. James and
S. Shinkai, Top. Curr. Chem., 2002, 218, 159; (h) W. Wang, X. Gao and
B. Wang, Curr. Org. Chem., 2002, 6, 1285; (i) H. Cao, D. I. Diaz, N.
DiCesare, J. R. Lakowicz and M. D. Heagy, Org. Lett., 2002, 4, 1503;
(j) Z. Zhong and E. V. Anslyn, J. Am. Chem. Soc., 2002, 124, 9014; (k)
W. Yang, S. Gao, X. Gao, V. V. R. Karnati, W. Ni, B. Wang, W. B.
Hooks, J. Carson and B. Weston, Bioorg. Med. Chem. Lett., 2002, 12,
2175; (l) V. R. Karnati, X. Gao, S. Gao, W. Yang, W. Ni, S. Sankar and
B. Wang, Bioorg. Med. Chem. Lett., 2002, 12, 3373.
compound 2 with only the boronic acid binding site shows the
strongest affinity with
monoboronic acid compounds.7 The order of selectivity for
monoboronic acid 2 is: -sorbitol > -glucarate ≈ -gluconate
-glucuronic acid ≈ -glucose, which reflects the intrinsic
D
-sorbitol, as would be expected with
D
D
D
>
D
D
affinity of a monoboronic acid unit for various sugars.
Compound 1 with two different binding sites, on the other hand,
showed the highest affinity for
all the structurally similar saccharides tested (Table 1). The
binding constant of 1 with -glucarate is increased by about
D-glucarate, as designed, among
D
5-fold compared with that of the monoboronic acid compound
(2), presumably due to the added guanidinium group in 1 for the
recognition of the carboxylate groups of glucarate. Such results
can only be attributed to the cooperative action of boronic acid
and guanidinium units in affording the specific recognition of
glucarate, and, therefore, indicate that 1 binds with glucarate in
a two-point binding mode and the appropriate linker length and
rigidity in 1 afford the selectivity for glucarate. Furthermore, the
fact that glucarate binds more tightly than glucuronic acid
indicates that both carboxylates of glucarate are involved in the
binding, presumably through interaction with the guanidinium
group. This is also consistent with the molecular modelling
studies. As discussed earlier, computer molecular modelling
results indicate that in the lowest energy conformation, the two
carboxylate groups of glucarate can interact with the protonated
7 G. Springsteen and B. Wang, Tetrahedron, 2002, 58, 5291.
8 F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97, 1609.
9 M. van Duin, J. A. Peters, A. P. G. Keiboom and H. van Bekkum, J.
Chem. Soc., Perkin Trans. 2, 1987, 473.
10 J. C. Norrild and I. Søtofte, J. Chem. Soc., Perkin Trans. 2, 2002,
303.
11 (a) A. P. de Silva, H. Q. N. Gunaratne, C. McVeigh, G. E. M. Maguire,
P. R. S. Maxwell and E. O’Hanlon, Chem. Commun., 1996, 2191; (b) C.
R. Cooper and T. D. James, Chem. Commun., 1997, 1419; (c) M.
Takeuchi, M. Yamamoto and S. Shinkai, Chem. Commun., 1997,
1731.
Table 1 Stability constants (M21) for the saccharides with 1 and 2
Saccharide
1
2
D
D
D
D
D
-Glucarate
-Gluconate
-Sorbitol
-Glucuronic acid
-Glucose
5142 ± 267
1452 ± 142
1300 ± 78
46 ± 5
846 ± 82
670 ± 39
1647 ± 141
27 ± 3
62 ± 9
18 ± 3
CHEM. COMMUN., 2003, 792–793
793