Conformation of Secondary Amides
proton10 and carbon or nitrogen shift tensors have equally
proved to be useful markers of local protein structure.
CHART 1. Syn a n d An ti Con for m a tion s for Z a n d
E Isom er s of Secon d a r y Am id es
1
1
A salient drawback of using N-alkylated acetamides
as reduced models lies in the fact that experimental NMR
data are only available for Z conformers owing to their
greater stability. Complex acetamides such as those
derived from amido sugars also exhibit a preferential or
exclusive Z-anti geometry as revealed by both NMR
1
2
studies in solution and X-ray crystallography. N-Meth-
ylacetamide, however, is the only simple acetamide that
allows one to study the E conformer by NMR spectros-
copy.13 In stark contrast, N-substituted formamides exist
as mixtures of Z and E isomers, thereby enabling a direct
comparison between calculated and experimentally avail-
able data. Formamide itself, the simplest model, has been
the subject of extensive spectroscopic and computational
studies.14 The rotational barriers for N,N-dialkyl-substi-
tuted formamides have also been investigated theoreti-
1
5
cally, including the effect of a hydrogen-bonding solvent.
Detailed studies on hydrogen-bonding interactions have
1
6
been provided for N-alkylformamides as well. The ro-
tational microwave spectrum, in the frequency range of
1
8-40 GHz, along with ab initio calculations of N-
ment. Calculations at B3LYP/6-31G*, MP2/6-31G*, and
MP2/6-31+G** levels for a series of acetamides, including
N-methylacetamide itself, invariably predict that the
lowest energy conformer is the Z-anti conformer.7 In
particular, the use of methods involving electronic cor-
relation and diffuse functions appears to be important
for representing lone pairs and delocalized structures,
thereby accounting for a greater charge distribution of
methylformamide suggests a conformer with the methyl
group cis to the carbonyl oxygen, though the equilibrium
(9) (a) Dalgarno, D. C.; Levine, B. A.; Williams, R. J . P. Biosci. Rep.
1
983, 3, 443-452. (b) J im e´ nez, M. A.; Nieto, J . L.; Herranz, J .; Rico,
M.; Santoro, J . FEBS Lett. 1987, 221, 320-324. (c) Szilagyi, L.;
J ardetzky, O. J . Magn. Reson. 1989, 83, 441-449. (d) O¨ sapay, K.; Case,
D. A. J . Am. Chem. Soc. 1991, 113, 9436-9444. (e) Wishart, D. S.;
Sykes, B. D.; Richards, F. M. Biochemistry 1992, 31, 1647-1651. (f)
Williamson, M. P.; Asakura, T. J . Magn. Reson., Ser. B 1993, 101, 63-
71. (g) O¨ sapay, K.; Case, D. A. J . Biomol. NMR 1994, 4, 215-230. (h)
Beger, R. D.; Bolton, P. H. J . Biomol. NMR 1997, 10, 129-142. (i)
Sitkoff, D.; Case, D. A. J . Am. Chem. Soc. 1997, 119, 12262-12273. (j)
Sharman, G. J .; Griffiths-J ones, S. R.; J ourdan, M.; Searle, M. S. J .
Am. Chem. Soc. 2001, 123, 12318-12324.
the amide linkage than once thought as suggested by
Wiberg and others.8 Moreover, the Z-anti orientation
could also be inferred from the chemical shifts of the
N-CHR protons as a proton situated anti to the NH
proton consistently resonates ∼0.8 ppm further downfield
than a proton located in a gauche disposition.7 As
indicated in Chart 1 the conformational sphere of a
secondary amide can be described, in an unambiguous
fashion that clarifies obsolete cis and trans terms, by the
torsion angles φ and æ defining the rotamer states about
each of the two C-N bonds involved in the amide bonds
(10) (a) Tjandra, N.; Bax, A. J . Am. Chem. Soc. 1997, 119, 8076-
8082. (b) Tessari, M.; Vis, H.; Boelens, R.; Kaptein, R.; Vuister, G. W.
J . Am. Chem. Soc. 1997, 119, 8985-8990. (c) Sharma, Y.; Kwon, O.
Y.; Brooks, B.; Tjandra, N. J . Am. Chem. Soc. 2002, 124, 327-335.
(11) (a) Spera, S., Bax, A. J . Am. Chem. Soc. 1991, 113, 5490-5492.
(b) Wishart, D. S.; Sykes, B. D.; Richards, F. M. J . Mol. Biol. 1991,
2
1
22, 311-333. (c) De Dios, A. C.; Pearson, J . G.; Oldfield, E. Science
993, 260, 1491-1496. (d) J iao, D.; Barfield, M.; Hruby, J . M. J . Am.
Chem. Soc. 1993, 115, 10883-10887. (e) De Dios, A. C.; Oldfield, E. J .
Am. Chem. Soc. 1994, 116, 11485-11488. (f) Lee, D.-K.; Ramamoorthy,
A. J . Magn. Reson. 1998, 133, 204-206. (g) Hong, M. J . Am. Chem.
Soc. 2000, 122, 3762-3770. (h) Wei, Y.; Lee, D.; Ramamoorthy, A. J .
Am. Chem. Soc. 2001, 123, 6118-6126. (i) Yao, X.; Hong, M. J . Am.
Chem. Soc. 2002, 124, 2730-2738.
(vide infra). NMR spectroscopy and computation are thus
two methods which can be applied complementarily with
considerable power to the conformational analysis.
The most reliable feature of NMR data as an experi-
mental tool is the fact that chemical shifts do precisely
reflect the magnetic anisotropy originated by the amide
function and they are likewise sensitive to other local
effects provided by solvents and substituents. Within this
context it is fair to mention that HR chemical shifts are
repeatedly used as diagnostic probes of secondary struc-
ture in peptides and proteins. Therefore, some correla-
tions between torsional angles and observed shifts have
been proposed, although patterns cannot often be defined
(12) (a) Avalos, M.; Babiano, R.; Dur a´ n, C.; J im e´ nez, J . L.; Palacios,
J . C. J . Chem. Soc., Perkin Trans. 2 1992, 2205-2215. (b) Avalos, M.;
Babiano, R.; Cintas, P.; Dur a´ n, C.; J im e´ nez, J . L.; Palacios, J . C.
Tetrahedron 1995, 51, 8043-8056. (c) Avalos, M.; Babiano, R.; Car-
retero, M. J .; Cintas, P.; Higes, F. J .; J im e´ nez, J . L.; Palacios, J . C.
Tetrahedron 1998, 54, 615-628.
(13) Radzicka, A.; Pedersen, L.; Wolfenden, R. Biochemistry 1988,
2
7, 4538-4541.
(14) (a) Kirchhoff, W. H.; J ohnson, D. R. J . Mol. Spectrosc. 1973,
45, 159-165. (b) Mohandas, P.; Singh, S. J . Mol. Struct.: THEOCHEM
1990, 361, 229-242. (c) Barszczewicz, A.; J aszunski, M.; J ackowski,
K. Chem. Phys. Lett. 1993, 203, 404-408. (d) Florian, J .; J ohnson, B.
G. J . Phys. Chem. 1994, 98, 3681-3687. (e) Kirby, C. W.; Lumsden,
M. D.; Wasylishen, R. E. Can. J . Chem. 1995, 73, 604-613. (f)
Neuefeind, J .; Zeidler, M. D.; Poulson, H. F. Mol. Phys. 1996, 87, 189-
9
with accuracy. Likewise, correlations based on amide
2
01. (g) Adalsteinsson, H.; Maulitz, A. H.; Bruice, T. C. J . Am. Chem.
(
6) Kubelka, J .; Keiderling, T. A. J . Phys. Chem. A 2001, 105,
0922-10928.
7) Avalos, M.; Babiano, R.; Barneto, J . L.; Bravo, J . L.; Cintas, P.;
J im e´ nez, J . L.; Palacios, J . C. J . Org. Chem. 2001, 66, 7275-7282.
8) (a) Wiberg, K. B.; Brenneman, C. M. J . Am. Chem. Soc. 1992,
14, 4, 831-840. (b) Greenberg, A.; Thomas, T. D.; Bevilacqua, C. R.;
Soc. 1996, 118, 7689-7693. (h) Vaara, J .; Kashi, J .; J okisaari, J .; Diehl,
P. J . Phys. Chem. A 1997, 101, 5069-5081 and references therein.
(15) (a) Bloemendal, M.; Rouw, A. C.; Somsen, G. J . Chem. Soc.,
Faraday Trans. 1 1986, 82, 53-60. (b) Wiberg, K. B.; Rablen, P. R.;
Rush, D. J .; Keith, T. A. J . Am. Chem. Soc. 1995, 117, 4261-4270.
(16) (a) Engdahl, A.; Nelander, B.; Astrand, P.-O. J . Chem. Phys.
1993, 99, 4894-4907. (b) McGrady, J . E.; Mingos, D. M. P. J . Chem.
Soc., Perkin Trans. 2 1995, 2287-2292. (c) Gao, J .; Pavelites, J . J .;
Habibollazadeh, D. J . Phys. Chem. 1996, 100, 2689-2697.
1
(
(
1
Coville, M.; J i, D.; Tsai, J .-C.; Wu, G. J . Org. Chem. 1992, 57, 7093-
099. (c) Wiberg, K. B.; Rablen, P. R. J . Am. Chem. Soc. 1995, 117,
201-2209. (d) Wiberg, K. B. Acc. Chem. Res. 1999, 32, 922-929.
7
2
J . Org. Chem, Vol. 68, No. 5, 2003 1835