ChemCatChem
10.1002/cctc.201901659
COMMUNICATION
Table 6. Use of K-OMS-2 for accessing diaminophenazine and
You, Angew. Chem. Int. Ed. 2018, 57, 9108–9112; h) Y. Qiu, W.-J. Kong,
J. Struwe, N. Sauermann, T. Rogge, A Scheremetjew, L. Ackermann,
Angew. Chem. Int. Ed. 2018, 57, 5828–5832.
purpurogallin skeletons.
K-OMS-2
[2]
a) J. Zhao, T. Nanjo, E. C. de Lucca, M. C. White, Nat. Chem. 2019, 11,
213–221; b) V. Dimakos, H. Y. Su, G. E. Garrett, M. S. Taylor, J. Am.
Chem. Soc. 2019, 141, 5149-5153; c) M. Li, M. Shang, H. Xu, X. Wang,
H.-X. Dai, J.-Q. Yu, Org. Lett. 2019, 21, 540–544; d) N. Kaplaneris, T.
Rogge, R. Yin, H. Wang, G. Sirvinskaite, L. Ackermann, Angew. Chem.
2019, 131, 3514–3518; e) H. Li, R. Gontla, J. Flegel, C. Merten, S. Ziegler,
A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2019, 58, 307–
311; f) M. C. White, J. Zhao, J. Am. Chem. Soc., 2018, 140, 13988–
H O /O
N
NH2
NH2
NH2
2
2
2
EtOH
2
7 °C, 2 h
N
9
NH2
0 %
1
g: o-phenylendiamine
2g: diaminophenazine
OH
K-OMS-2
/O
EtOH
OH O
OH
OH
OH
H
2
O
2
2
1
4009.
a) S. Santoro, F. Ferlin, L. Ackermann, L. Vaccaro, Chem. Soc. Rev.
019, 48, 2767–2782; b) P. Gandeepan, T. Müller, D. Zell, G. Cera,
HO
HO
[3]
27 °C, 2 h
2
1
h: pyrogallol
94 %
h: purpurogallin
S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452; c) G.
Parthasarathy, N. Kaplaneris, S. Santoro, L. Vaccaro, L. Ackermann,
ACS Sustain. Chem. Eng. 2019, 7, 8023–8040; d) W. Wang, M. M.
Lorion, J. Shah, A. R. Kapdi, L. Ackermann, Angew. Chem. Int. Ed. 2018,
2
[
3
(
a] Reaction conditions: substrates 1g or 1h (1 mmol), H
eq.), O (1 atm, balloon), K-OMS-2 (1.3 mg, 1.6 mol %), EtOH 4mL
0.25 M), 27 °C, 2h.
2 2
O (3 mmol,
2
57, 14700–14717; e) M. M. Lorion, K. Maindan, A. R. Kapdi, L.
Ackermann, Chem. Soc. Rev. 2017, 46, 7399–7420; f) S. Santoro, F.
Ferlin, L. Luciani, L. Ackermann, L. Vaccaro, Green Chem., 2017,19,
In conclusion, we have demonstrated that manganese-based
inorganic-oxide framework can efficiently mimic the
microenvironment of peroxidase enzymes in the synthesis of
valuable compounds. K-OMS-2 is and effective heterogeneous
manganese oxidase system more stable than an enzymatic
catalyst and allows the preparation in excellent yields of novel
substituted phenoxazinones derivatives that are not accessible by
classic enzyme catalysis. The 3D tunnel structure is of key
importance for the overall high efficiency of the C‒H oxidative
coupling and also for the reusability of the catalyst. The
heterogeneous nature of manganese-based catalyst was proved
by leaching measurements and XRD analyses. Re-oxidation and
recycling of the active catalyst was optimized leading to asimple
and efficient methodology. We believe that these results might be
of general interest and inspire further application of manganese-
based heterogeneous catalysts in processes of key interest for
both industry and academia.
1
601–1612; g) S. Santoro, S. I. Kozhushkov, L. Ackermann, L. Vaccaro,
Green Chem., 2016,18, 3471–3493.
[
[
4]
5]
a) S. N. Natoli, J. F. Hartwig, Acc. Chem. Res., 2019, 52, 326–335; b) H.
Sterckx, B. Morel, B. U. W. Maes, Angew. Chem. Int. Ed. 2019, 58,
7946–7970; c) Y. Liang, J. Wei, X. Qiu, N. Jiao, Chem. Rev. 2018, 118,
4
912–4945; d) J. F. Hartwig, Acc. Chem. Res. 2017, 50, 549–555; e) J.
C. Lewis, P. S. Coelho, F. H. Arnold, Chem. Soc. Rev. 2011, 40, 2003–
021.
2
a) I. Cho, Z. J. Jia, F. H. Arnold, Science, 2019, 364, 575–578. b) R.
Singh, A. Mukherjee, ACS Catal. 2019, 9, 3604–3617 c) S. A. Loskot, D.
K. Romney, F. H. Arnold, B. M. Stoltz, J. Am. Chem. Soc. 2017, 139,
1
0196–10199; d) T. Wongnate, P. Surawatanawong, L. Chuaboon, N.
Lawan, P. Chaiyen, Chem. Eur. J. 2019, 25, 4460–4471; e) S. Meng, W.
Han, J. Zhao, X.-H. Jian, H.-X. Pan, G.-L. Tang, Angew. Chem. Int.
Ed. 2018, 57, 719–723.
[
6]
a) Y. Chen, G. Ke, Y. Ma, Z. Zhu, M. Liu, Y. Liu, H. Yan, C. J. Yang, J.
Am. Chem. Soc. 2018, 140, 8990–8996; b) I. Drienovská, C. Mayer, C.
Dulson, G. Roelfes, Nature Chemistry 2018, 10, 946–952; c) L. Villarino,
K. E. Splan, E. Reddem, L. Alonso-Cotchico, C. G. de Souza, A. Lledós,
J.-D. Maréchal, A.-M. W. H. Thunnissen, G. Roelfes, Angew. Chem.
Acknowledgements
2018, 130, 7911–7915; d) S. Y. Park, I-S. Hwang, H.-J. Lee, C. E. Song,
Generous support by NMBP-01-2016 Programme of the
European Union's Horizon 2020 Framework Programme
H2020/2014-2020/ under grant agreement nº [720996] and the
DFG (Gottfried-Wilhelm-Leibniz-Preis to LA) is gratefully
acknowledged. The Università degli Studi di Perugia and the
MIUR are gratefully acknowledged is thanked for financial support
through the program Dipartimenti di Eccellenza 2018-2022,
project AMIS.
Nat. Commun. 2017, 8, 14877; f) Q. Wang, X. Zhang, L. Huang, Z. Zhang,
S. Dong, Angew. Chem. 2017, 129, 16298–16301; e) A. G. Jarvis, L.
Obrecht, P. J. Deuss, W. Laan, E. K. Gibson, P. P. Wells, P. C. J. Kamer,
Angew. Chem. Int. Ed. 2017, 56, 13596–13600. f) J. K. Sahoo, C. G.
Pappas, I. R. Sasselli, Y. M. Abul-Haija, R. V. Ulijn, Angew. Chem. 2017,
129, 6932–6936.
[7]
a) Robert Chapman, M. H. Stenzel, J. Am. Chem. Soc. 2019,141, 2754–
2769; b) F. P. Guengerich, F. K. Yoshimoto, Chem. Rev. 2018, 118,
6573–6655; c) F. Rudroff, M. D. Mihovilovic, H. Gröger, R. Snajdrova, H.
Iding, U. T. Bornscheuer, Nat. Catal. 2018, 1, 12–22; d) J. Dong, E.
Fernández-Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S. Schmidt, Y.
Wang, S. Younes, W. Zhang, Angew. Chem. Int. Ed. 2018, 57, 9238–
Keywords: manganese • heterogeneous catalysis • C–H
functionalization •
9261.
[1]
For selected review: a) J. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-
Delord, L. Ackermann Angew. Chem. Int. Ed 2019, in press
doi:10.1002/anie.201904214; b) H. Wang, X. Gao, Z. Lv, T. Abdelilah, A.
Lei, Chem. Rev. 2019, 119, 6769–6787; c) C.-S. Wang, P. H. Dixneuf,
J.-F. Soule Chem. Rev. 2018, 118, 7532−7585; For selected recent
examples: d) X.-H. Shan, H.-X. Zheng, B. Yang, L. Tie, J.-L. Fu, J.-P. Qu,
Y.-B. Kang, Nat. Commun. 2019, 10, 908; e) Z.-J. Cai, C.-X. Liu, Q. Gu,
C. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2019, 58, 2149–2153; f) G.
Hong, P. D. Nahide, U. K. Neelam, P. Amadeo, A. Vijeta, J. M. Curto, C.
E. Hendrick, K. F. Van Gelder, M. C. Kozlowski, ACS Catal. 2019, 9,
[8]
[9]
a) P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J. W. Han, D.-P.
Kim, W. Choi, Nat. Commun. 2019, 10, 940; b) Y. Lv, M. Ma, Y. Huang,
Y. Xia, Chem. Eur. J. 2019, 25, 954–960; c) H. Sun, Y. Zhou, J. Ren, X.
Qu, Angew. Chem. Int. Ed. 2018, 57, 9224–9237.
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li,Y. Zhu, L. Qin, H. Wei, Chem.
Soc. Rev., 2019, 48, 1004–1076 and references cited therein.
[10] a) Q. Fan, S. Werner, J. Tschakert, D. Ebeling, A. Schirmeisen, G. Hilt,
W. Hieringer, J. M. Gottfried, J. Am. Chem. Soc. 2018, 140, 7526–7532;
b) D. Pla, M. Gómez, ACS Catal. 2016, 6,3537–3552.
[11] a) S. Wu, X. Yang, C. Janiak, Angew. Chem. Int. Ed. 2019,
doi:10.1002/anie.201900013; b) T. A. Bender, M. Morimoto, R. G.
3716–3724; g) Y. Shi, L. Zhang, J. Lan, M. Zhang, F. Zhou, W. Wei, J.
This article is protected by copyright. All rights reserved.