Journal of the American Chemical Society
Page 4 of 9
of vanadium loadings of Hf-MOF-808-V and Zr-NU-1000-V
(1) Weckhuysen, B. M.; Keller, D. E. Catal. Today 2003, 78, 25–46.
(2) Wachs, I. E. Dalt. Trans. 2013, 42 (33), 11762.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
following use as catalysts matched those the pristine compounds.
Additionally, hot filtration tests showed no leaching which further
support the heterogeneous nature of the catalysts (Figure. S20).
Furthermore, multiple post-catalysis characterization studies indi-
cated the structure and composition of Hf-MOF-808-V and Zr-
NU-1000-V were retained during and after catalysis (Figures
S21–22).
(3) Sutradhar, M.; Martins, L. M. D. R. S.; Guedes da Silva, M. F. C.;
Pombeiro, A. J. L. Coord. Chem. Rev. 2015, 301–302, 200–239.
(4) Guerrero-Pérez, M. O. Catal. Today 2017, 285, 226–233.
(5) Eriksen, K. M.; Karydis, D. A.; Boghosian, S.; Fehrmann, R. J.
Catal. 1995, 155, 32–42.
(6) Abon, M.; Volta, J.-C. Appl. Catal. A Gen. 1997, 157, 173–193.
(7) Xie, J.; Zhuang, W.; Yan, N.; Du, Y.; Xi, S.; Zhang, W.; Tang, J.;
Zhou, Y.; Wang, J. Chem. Eng. J. 2017, 328, 1031–1042.
In summary, the structures of the incorporated vanadium oxide
species were elucidated through spectroscopic techniques and
SCXRD studies, which showed that they coordinate differently to
the nodes of Hf-MOF-808-V versus those of Zr-NU-1000-V.
SCXRD and variable-temperature spectroscopic studies of Hf-
MOF-808-V revealed that the as-prepared material, while
featuring only a single vanadium atom per node, employs three
distinct vanadium binding sites. Remarkably, heating consolidates
the siting such that the vanadium ions occupy essentially only a
single site. The activity of the single-site version of the catalyst is
three times that of the multi-site version. The thermal and
(
8) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B Environ.
998, 18, 1–36.
9) Blasco, T.; Nieto, J. M. L. Appl. Catal. A Gen. 1997, 157, 117–142
(10) Went, G. T.; Oyama, S. T.; Bell, A. T. J. Phys. Chem. 1990, 94,
1
(
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4240–4246.
(11) Cedeño-Caero, L.; Gomez-Bernal, H.; Fraustro-Cuevas, A.; Guer-
ra-Gomez, H. D.; Cuevas-Garcia, R. Catal. Today 2008, 133–135, 244–
254.
(12) Coq, B.; Figueras, F. Coord. Chem. Rev. 1998, 178–180, 1753–
1
783.
(13) Thomas, J. M.; Raja, R.; Lewis, D. W. Angew. Chemie - Int. Ed.
2
005, 44, 6456–6482.
(14) Rozanska, X.; Fortrie, R.; Sauer, J. J. Am. Chem. Soc. 2014, 136,
7751–7761.
temporal evolution of the Hf -supported, single-atom catalyst
6
from multi-site to single-site form, is manifested in kinetic
measurements as striking, and otherwise puzzling, increases in
TOF values with time. We anticipate that the observed,
remarkable persistence of crystallinity of the MOF supports over
the course of catalyst installation and subsequent thermal
treatment – even for crystals large enough to support SCXRD –
will yield additional insights into the design and methodology for
creating more effective MOF-supported, single-metal-ion, and/or
single-site, catalysts.
(15) Thomas, J. M. Phys. Chem. Chem. Phys. 2014, 16, 7647–7661.
(16) Pelletier, J. D. A.; Basset, J. M. Acc. Chem. Res. 2016, 49, 664–
677. (17) Huang, C.; Han, X.; Shao, Z. C.; Gao, K.; Liu, M.; Wang,
Y.; Wu, J.; Hou, H.; Mi, L. Inorg. Chem. 2017, 56 (9), 4874–4884.
(18) Wang, X.; Liu, M.; Wang, Y.; Fan, H.; Wu, J.; Huang, C.; Hou, H.
Inorg. Chem. 2017, 56 (21), 13329–13336.
(19) Eddaoudi, M.; Sava, D. F.; Eubank, J. F.; Adil, K.; Guillerm, V.
Chem. Soc. Rev. 2015, 44, 228–249.
(20) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Sci-
ence 2013, 7, 341.
(21) O’Keeffe, M.; Yaghi, O. M. Chem. Rev. 2012, 112, 675–702.
(
22) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38,
477–1504.
23) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.;
!
33/#)!4%$ #/.4%.4
1
(
3µ∞∞Ø≤¥©Æß )ƶØ≤≠°¥©ØÆ
Hupp, J. T. Chem. Soc. Rev. 2009, 38 (5), 1450–1459.
(24) Ferey, G.; Serre, C. Chem. Soc. Rev. 2009, 38, 1380–1399.
The photographs of single crystals, crystallographic data, Diffuse-
reflectance UV and IR, Raman, XPS spectra. This material is
available free of charge via the Internet at http://pubs.acs.org.
(
25) Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.;
Hupp, J. T. Acc. Chem. Res. 2017, 50, 805–813.
26) Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38
(5), 1284–1293.
27) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; De-
(
!
54(/2 ).&/2-!4)/.
(
Marco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.;
Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135,
10294−10297.
#Ø≤≤•≥∞ØÆ§©Æß !µ¥®Ø≤
Ø¥•≥
*
(28) Li, Z.; Peters, A. W.; Bernales, V.; Ortuño, M. A.; Schweitzer, N.
.
M.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chap-
man, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. ACS
Cent. Sci. 2017, 3,31−38.
(29) Li, Z.; Peters, A. W.; Platero-Prats, A. E.; Liu, J.; Kung, C. W.;
Noh, H.; DeStefano, M. R.; Schweitzer, N. M.; Chapman, K. W.; Hupp, J.
T.; Farha, O. K. J. Am. Chem. Soc. 2017, 139 (42), 15251–15258.
The authors declare no competing financial interests.
!#+./7,%$'-%.4
(
30) Peng, Y.; Huang, H.; Zhang, Y.; Kang, C.; Chen, S.; Song, L.; Liu,
D.; Zhong, C. Nat. Commun. 2018, 9, 187.
31) Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W.
J. Am. Chem. Soc. 2017, 139, 7004-7011
32) Cao, L.; Lin, Z.; Peng, F.; Wang, W.; Huang, R.; Wang, C.; Yan,
This work was supported as part of the Inorganometallic Catalyst
Design Center, an EFRC funded by the DOE, Office of Science,
Basic Energy Sciences (DE-SC0012702). This work made use of
the J.B. Cohen X-ray Diffraction Facility supported by the
MRSEC program of the National Science Foundation (DMR-
(
(
J.; Liang, J.; Zhang, Z.; Zhang, T.; Long, L.; Sun, J.; Lin, W. Angew.
Chemie - Int. Ed. 2016, 55 (16), 4962–4966.
(33) Manna, K.; Ji, P.; Lin, Z.; Greene, F. X.; Urban, A.; Thacker, N.
C.; Lin, W. Nat. Commun. 2016, 7, 12610.
(34) S. Ahn, N. E. Thornburg, Z. Li, T. C. Wang, L. C. Gallington, K.
W. Chapman, J. M. Notestein, J. T. Hupp, O. K. Farha, Inorg. Chem.
1
121262) at the Materials Research Center of Northwestern
University. This work made use of Keck-II facilities of the
NUANCE Center at Northwestern University, which has received
support from the Soft and Hybrid Nanotechnology Experimental
(
(
SHyNE) Resource (NSF NNCI-1542205); the MRSEC program
NSF DMR-1121262) at the Materials Research Center; the
2
016, 55, 11954-11961
35) Feng, D.; Wang, K.; Su, J.; Liu, T. F.; Park, J.; Wei, Z.; Bosch,
(
International Institute for Nanotechnology (IIN); the Keck
Foundation; and the State of Illinois, through the IIN. We thank
Prof. Justin Notestein for access to the diffuse reflectance instru-
ment.
M.; Yakovenko, A.; Zou, X.; Zhou, H. C. Angew. Chemie - Int. Ed. 2015,
54 (1), 149–154.
(36) Manna, K.; Zhang, T.; Lin, W. J. Am. Chem. Soc. 2014, 136,
6566–6569.
(37) Ji, P.; Manna, K.; Lin, Z.; Urban, A.; Greene, F. X.; Lan, G.; Lin,
W. J. Am. Chem. Soc. 2016, 138, 12234–12242.
2%&%2%.#%3
ACS Paragon Plus Environment