Dissociation of Acetophenone Molecular Ions
J. Phys. Chem. A, Vol. 101, No. 24, 1997 4391
(11) Sena, M.; Riveros, J. M. Rapid Commun. Mass Spectrom. 1994, 8,
1031.
(12) Lin, C.-Y.; Dunbar, R. C. J. Phys. Chem. 1996, 100, 655.
(13) Linnert, H. V.; Riveros, J. M. Int. J. Mass Spectrom. Ion Processes
1994, 140, 163.
(14) Schindler, T.; Berg, C.; Niedner-Schatteburg, G.; Bondybey, V. E.
Chem. Phys. Lett. 1996, 250, 301.
(15) Beyer, M; Berg, C.; Go¨rlitzer, H. W.; Schindler, T.; Achatz, U.;
Albert, G.; Niedner-Schatteburg, G.; Bondybey, V. E. J. Am. Chem. Soc.
1996, 118, 7386.
(16) Price, W. D.; Schnier, P. D.; Williams, E. R. Anal. Chem. 1996,
68, 859.
(17) Schnier, P. D.; Price, W. D.; Jockusch, R. A.; Williams, E. R. J.
Am. Chem. Soc. 1996, 118, 7178.
(18) Lin, C.-Y.; Dunbar, R. C.; Haynes, C. L.; Armentrout, P. B.; Tonner,
D. S.; McMahon, T. B. J. Phys. Chem. 1996, 100, 19659.
(19) (a) Elder, Jr, J. F.; Beynon, J. H.; Cooks, R. G. Org. Mass Spectrom.
1976, 11, 415; (b) Elder, Jr, J. F.; Beynon, J. H.; Cooks, R. G. Org. Mass
Spectrom. 1976, 11, 423.
experiments are carried out at lower pressures than those used
in this study. The ultimate accuracy in obtaining thermochemi-
cal parameters from these experiments depends on several
variables which have been repeatedly emphasized. For example,
the temperature of the lamp is assumed to be well represented
by eq 2 but ideally should be checked by independent methods
such as optical pyrometry. Furthermore, the tungsten lamp used
in our experiments is treated as a pseudoblackbody source
represented by an effective temperature. While the radiation
distribution closely resembles that of a blackbody, the color
temperature of tungsten is typically 30 K higher than the
temperature measured by eq 2. Thus, different radiation sources
could be used to ensure that the blackbody equivalency yields
consistent results. A second alternative would be to use
commercially available blackbody sources to eliminate any
possible effects from an uneven radiation density distribution.
Errors associated with the Einstein absorption and emission
coefficients obtained from theoretically calculated band intensi-
ties are difficult to estimate, but their effect is more important
in the calculation of absolute rate constants than in the variation
of the rate constant with temperature which is used to obtain
dissociation energies.
(20) (a) 48.2 kJ mol-1 obtained by: McLafferty, F. W.; Bente, P. F.;
Kornfeld, R.; Tsai, S.-C.; Howe, I. J. Am. Chem. Soc. 1973, 95, 2120. (b)
84.9 kJ mol-1 obtained by: Benoit, F. Org. Mass Spectrom. 1973, 7, 1407.
(c) 60.8 kJ mol-1 obtained in ref 19a. (d) 37.6 kJ mol-1 obtained by:
McLoughlin, R. G.; Traeger, J. C. Org. Mass Spectrom. 1979, 14, 434.
(21) Isolani, P. C.; Kida-Tinone, M. C.; Linnert, H. V.; Menegon, J. J.;
Riveros, J.M.; Tiedemann, P. W.; Franzin, R. L. Qu´ım. NoVa 1992, 15,
351.
(22) Forsythe, W. E. In International Critical Tables of Numerical Data,
Physics, Chemistry and Technology; Washburn, E. W., Ed., McGraw-Hill
Book Company: 1929; pp 245-247.
Finally, these experiments suggest the possibility of using
near-blackbody sources with infrared filters to obtain infrared
spectra of ions either by direct dissociation or in conjunction
with a CO2 laser in analogy with the two laser experiments
advocated by Eyler and co-workers.41 These experiments also
extend the application of thermal dissociation by infrared
dissociation and may be of particular interest in dealing with
ions derived from biomolecules.
(23) Linnert, H. V. Personal communication.
(24) (a) McIver, R. T., Jr.; Hunter, R. L.; Baykut, G. ReV. Sci. Instrum.
1989, 60, 400. (b) McIver, R. T., Jr.; Hunter, R. L.; Baykut, G. Int. J. Mass
Spectrom. Ion Processes 1989, 89, 343.
(25) The detailed electron energy dependence of the reactions leading
to protonated acetophenone will be discussed in a future publication.
However, reaction with traces of background water can also account for
the formation of the m/z 121 ion.
(26) Gambi, A.; Giorgani, S.; Passerini, A.; Visinoni, R.; Gherseti, S.
Spectrochim. Acta 1980, 36A, 871.
(27) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.;
Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.
A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Blinkley,
J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.;
Stewart, J. J. P.; Pople, J. A. GAUSSIAN/92, Revision C; Gaussian, Inc.:
Pittsburgh, PA, 1992.
(28) See for example Wiberg, K. B.; Thiel, Y.; Goodman, L.; Leszc-
zynski, J. J. Am. Chem. Soc. 1995, 99, 13850.
(29) Kramers, H. A. Physica 1940, 7, 284.
(30) Montroll, W.; Shuler, K. E. AdV. Chem. Phys. 1958, 1, 361.
(31) (a) Gardiner, W. Handbook of Stochastic Methods for Physics,
Chemistry and the Natural Sciences; Springer Series in Synergetics. 13;
Springer-Verlag: Berlin, 1983. (b) Binder, K. Applications of the Monte
Carlo Method; Springer-Verlag: Berlin, 1984.
Acknowledgment. This work was supported by generous
grants from the Sa˜o Paulo Science Foundation (FAPESP Grant
94/4406) and the Brazilian Research Council (CNPq) through
its graduate fellowship (M.S.) and Senior Research fellowship
(J.M.R.) programs. We thank Jair J. Menegon for technical
support in setting up several of the experimental procedures
and Dr. Nelson H. Morgon for his guidance in the early stages
of the theoretical calculations. The authors are also indebted
to Prof. Robert C. Dunbar for drawing our attention to the
possible effects of the light emitted by the filament and to Prof.
J. L. Beauchamp for comments regarding the possibility of
extracting Arrhenius type plots from experiments carried out
as function of lamp power.
(32) Liboff, L. Kinetic Theory: Classical, Quantum, and RelatiVistic
Description; Prentice-Hall: Englewood Cliffs, NJ, 1990.
(33) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recom-
bination Reactions; Blackwell Scientific Publications: Oxford, 1990.
(34) (a) Moore, J. H.; Davis, C. C.; Coplan, M. A. Building Scientific
Apparatus; Addison-Wesley: Redwood City, CA, 1989; pp 197-200. (b)
Skoog, D. A.; Leary, J. A. Principles of Instrumental Analysis, 4th ed.;
Saunders College Publishing: Fort Worth, TX, 1992; p 75. (c) Willard, H.
H.; Merritt, L. L., Jr.; Dean, J. A. Instrumental Methods of Analysis; Van
Nostrand: Princeton, NJ, 1958; pp 31-32. (d) Zworykin, V. K.; Gramberg,
E. Photoelectricity and Its Applications; John Wiley and Sons: New York,
1949; pp 17-19, 408-409.
References and Notes
(1) Thorne, L. R.; Beauchamp, J. L. In Gas Phase Ion Chemistry, Vol
3: Ions and Light; Bowers, M. T., Ed.; Academic Press: Orlando, FL,
1984; pp 42-97.
(2) Lupo, D. W.; Quack, M. Chem. ReV. 1987, 87, 181.
(3) Dunbar, R. C. J. Chem. Phys. 1991, 95, 2537.
(4) Uechi, G. T.; Dunbar, R. C. J. Chem. Phys. 1992, 96, 8897.
(5) Gaumann, T.; Zhu, Z.; Kida, M. C.; Riveros, J. M. J. Am. Soc.
Mass Spectrom. 1991, 2, 372.
(6) Bomse, D. R.; Woodin, R. L.; Beauchamp, J. L. In AdVances in
Laser Chemistry; Zewail, A. H, Ed.; Springer-Verlag: Berlin, 1978; pp
362-373.
(7) Tho¨lmann, D.; Tonner, D. S.; McMahon, T. B. J. Phys. Chem. 1994,
98, 2002.
(35) Lias, S. G.; Liebman, J. F.; Levin, R. D.; Kafafi, S. A., NIST
Standard Reference Database 25, Structures and Properties Version 2.02;
NIST: Gaithersburg, MD, 1994.
(36) The most recent X-ray photoelectron spectrum of acetophenone
yields an IE of 9.38 eV. See: Distefano, G.; Granozzi, G.; Olivato, P. R.;
Guerrero, S. A. J. Chem. Soc., Perkin Trans. 2 1987, 1459.
(37) Helal, A. I.; Zahran, N. F. Org. Mass Spectrom. 1978, 13, 549.
(38) Szepes, L.; Baer, T. J. Am. Chem. Soc. 1984, 106, 273.
(39) Turecek, F. Tetrahedron Lett. 1986, 27, 4219 and references therein.
(40) Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Mass Spectrometry
of Organic Compounds; Holden Day: San Francisco, CA 1967; p 155.
(41) Sena, M.; Riveros, J. M. Manuscript in preparation.
(42) Peiris, D. M.; Cheeseman, M. A.; Ramanathan, R.; Eyler, J. R. J.
Phys. Chem. 1993, 97, 7839.
(8) Tonner, D. S.; Tho¨lmann, D.; McMahon, T. B. Chem. Phys. Lett.
1995, 233, 324.
(9) Dunbar, R. C. J. Phys. Chem. 1994, 98, 8705.
(10) Dunbar, R. C.; McMahon, T. B.; Tho¨lmann, D.; Tonner, D. S.;
Salahub, D. R.; Wei, D. J. Am. Chem. Soc. 1995, 117, 12819.